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Abstract. The ratio of Ca II 8542 Å to Hβ line intensities has been used for a long time to diagnose the gas
pressure in solar prominences. In this paper we reconsider the theoretical dependence of E(8542)/E(Hβ) on the
gas pressure, as originally computed by Heasley & Milkey (1978), and extend this theoretical correlation to higher
pressures. Firstly, we revise the formation of calcium lines in prominences, using in parallel two independently
developed NLTE radiative transfer codes. Computations consist of two subsequent steps: (i) the formation of
hydrogen spectrum (treated in a similar way as in Gouttebroze et al. 1993), and (ii) the formation of calcium lines,
using the electron-density structure obtained in step (i). The influence of hydrogen Lyman lines on Ca II to Ca III
ionization is found to be very important for the determination of calcium-to-hydrogen line ratios. In particular,
the intensities obtained for calcium lines at low pressures are significantly lower than those obtained by Heasley &
Milkey (1978), which is the result of a greater Ca III/Ca II ratio. Our numerical results have been further checked
against an approximate analytical model. Secondly, we have performed an extended computation using a large
grid of models covering different temperatures, gas pressures, geometrical thicknesses, microturbulent velocities
and prominence altitudes. For temperatures lower than 10 000 K and pressures lower than 0.1 dyn cm−2, the line
ratio E(8542)/E(Hβ) undergoes only small variations, remaining between 0.2 and 0.3. At higher pressures (0.1
to 1 dyn cm−2), the behaviour of this ratio appears to be strongly dependent on temperature: rapidly increasing
below 6000 K, moderately increasing between 6000 and 8000 K, and generally decreasing at higher temperatures.
A comparison of the present models with recent observations of Stellmacher & Wiehr (2000) suggests the existence
of cool prominence structures with temperatures around 6000 K and gas pressures higher than 0.1 dyn cm−2.
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1. Introduction

Several lines of hydrogen and ionized calcium are com-
monly observed in the optical spectra of solar promi-
nences. For hydrogen, these observations concern princi-
pally the Balmer series, while the ionized calcium produces
five lines of interest: the resonance lines (H and K) and the
infrared triplet. Since the formation conditions of hydro-
gen and calcium lines are different, some attempts were
made to establish relations between the relative intensi-
ties of the lines from the two elements and the physi-
cal conditions in prominences, in order to interpret the
observations.

Heasley & Milkey (1978, hereafter HM78) compared
the theoretical integrated intensities of two lines: one of
the infrared lines of Ca ii, at 8542 Å, and the Hβ line, at
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4861 Å. They found that, in the temperature range [6500,
9000 K], the ratio of integrated intensities

r =
E(8542)
E(Hβ)

(1)

was relatively insensitive to temperature (T ), practically
independent of column mass, and regularly decreasing
with gas pressure (P ). So, they derived a mean relation for
r(P ) and subsequently used it to interpret observations.
However, these computations of HM78 were restricted to
3 temperatures (6500, 7500 and 9000 K) and low pressures
(about 0.003 to 0.2 dyn cm−2).

Gouttebroze et al. (1997, hereafter GVH97) investi-
gated prominence models with higher pressures (0.1 to
1 dyn cm−2) and a wider range of temperatures (4300 to
15 000 K). They fixed the other parameters (slab thick-
ness 2000 km, microturbulent velocity 5 km s−1, altitude
10 000 km). As will be shown in the next section, these
computations suffered from some inaccuracies, especially

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20020142

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20020142


274 P. Gouttebroze and P. Heinzel: Line ratios in prominences

Table 1. Simultaneous observations of E(8542) and E(Hβ).

Reference E(8542)/E(Hβ)
(average value)

Landman & Illing (1977) 0.375

de Boer et al. (1998) 0.425

Stellmacher & Wiehr (2000) 0.63 (faint prominence)
0.28 (bright prominence)

concerning the ionization of calcium, but they produced
new qualitative results which are confirmed by the present
computations. In particular, they found that, at low tem-
peratures, r is greater for P = 1 dyn cm−2 than for
P = 0.1 dyn cm−2. So, the mean slope of r(P ) in this
range of pressures is positive, while it is negative at lower
pressures, according to HM78. This is important for the
diagnosis of prominences since, for a given value of r, we
may have two different solutions for P , one in the low pres-
sure range (given by the relation of HM78), and the other
one at pressures higher than 0.1 dyn cm−2. For disk fila-
ments, 8542 Å line intensities were computed for a large
grid of horizontal slab models (Tziotziou et al. 2001).

The two lines under consideration have been observed
simultaneously in prominences by different authors. In
Table 1, we present a (non exhaustive) list of such observa-
tions. The observed ratios r vary approximately between
0.2 and 0.8. If we apply the relation derived by HM78,
this corresponds to pressures lower than 0.06 dyn cm−2,
while GVH97 relations also predicts a solution at P >
0.1 dyn cm−2.

Considering the importance of this relation for the de-
termination of pressure, and the small number of models
processed both by HM78 and GVH97, we present here
an extended set of computations. In addition, compara-
tive tests have been made between two independent codes
in order to improve the accuracy of the computations, as
compared to the previous ones reported by GVH97. These
numerical methods are described in Sect. 2. The forma-
tion of lines is treated in Sect. 3, and illustrated by some
numerical examples. In Sect. 4, we present the results ob-
tained with a large set of models including the variations of
many different parameters, and derive statistical relations.
In the last section, we discuss the consequences of these re-
sults upon the interpretation of prominence observations.

2. Numerical methods

We use the same kind of models as in GVH97: a plane-
parallel slab standing vertically above the solar surface,
and irradiated on both faces by the Sun. We solve the
equations of radiative transfer, statistical equilibrium of
level populations, and ionization equilibrium for the hy-
drogen atom. In this process, we obtain the radiation
field inside the prominence as a function of depth and
frequency. This radiation field is then used to com-
pute the photoionization rates for the calcium atom.
Photoionization of Ca ii is driven by the internal radiation
field of optically thick Lyman lines and Lyman continuum,

and by UV continuum radiation longward of 912 Å which
is supposed to freely penetrate into the prominence slab.
Then, the radiative transfer and statistical equilibrium
equations are solved for the calcium atom, which yields
level populations and line intensities. In this way, we ob-
tain the synthetic spectra of hydrogen and calcium emit-
ted by the prominence.

In order to optimize the accuracy of the computations,
we used two independently developed codes, compared the
results for several models, and improved these codes by
mutual corrections.

The first code, developed by one of us (PG), is an
improved version of that used by GVH97. Its hydrogen
part is described in Gouttebroze & Labrosse (2000). It
is based on classical techniques, such as the Feautrier
method with variable Eddington factors for solving the ra-
diative transfer equations, and equivalent-two-level-atom
(ETLA) technique for the statistical equilibrium equa-
tions. Partial frequency redistribution is taken into ac-
count for resonance lines of hydrogen and calcium. The
model hydrogen atom includes 20 levels plus continuum,
while the calcium atom includes one level for Ca i, five
for Ca ii and one for Ca iii (it is exactly the same as in
GVH97). The statistical equilibrium equations for deter-
mining the level populations are solved by ETLA itera-
tion. The latest improvement consists of using a mixture
of full and net radiative rates for the lines, instead of pure
net rates. In this way, the number of iterations needed to
achieve convergence in statistical equilibrium equations is
reduced by a factor of 2 or 3, depending on the model.

The other code, developed by PH, is based on more
modern techniques, such as multilevel accelerated Lambda
iteration (MALI). The hydrogen part of this code is de-
scribed in Heinzel (1995). The present version uses a hy-
drogen atom with 12 levels plus continuum and partial
redistribution in Lyman lines. For Ca ii–Ca iii, it uses the
same atomic model as the ETLA code.

The comparative procedure showed in particular the
importance of Lyman lines for the Ca ii to Ca iii ioniza-
tion. The head of the principal continuum is at 1044 Å,
so that the corresponding photoionization rates are par-
ticularly sensitive to the intensities in the Lyman-β line
(1026 Å) and, to a lesser extent, to subsequent Lyman
lines (973 Å, 950 Å, etc.). Other continua (from higher
levels) are also sensitive to the intensities in the Lyman-
α line (1216 Å). The code used by GVH97 was taking
into account these lines, but the wavelength mesh used for
interpolation was too coarse within the Lyman line pro-
files, so that the ionization rates were inaccurate, and the
ratio (Ca iii/Ca ii) generally underestimated. The code
written by PH, using frequency-integrated intensities in
the Lyman lines to compute the calcium photoionization
rates, did not suffer from this interpolation problem. The
PG code was then modified in order to use, in the pho-
toionization rate computation, a variable-step wavelength
mesh with high resolution (0.01 Å) in the cores of the
Lyman lines, which ensures high accuracy.
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In addition, the intensities emitted by the solar sur-
face, which are used (after dilution) as incident intensities
on the faces of the prominence slab, have been revised.
For eight Lyman lines (Lβ to Lι), we presently use solar
intensities measured by the SOHO/SUMER instrument
(Warren et al. 1998). Consistently, we apply the full solu-
tion of radiative transfer equations to the nine first lines
of the Lyman series, instead of four lines as in preceding
papers (Gouttebroze et al. 1993, GVH97, Gouttebroze &
Labrosse 2000). For other lines, the incident intensities are
the same as those used in GVH97.

After several minor corrections and modifications, the
line intensities predicted by the two codes generally agree
within 10%. The results reported in the following sections
are those finally obtained with the PG code only.

3. Line formation

In order to study the formation of hydrogen and calcium
lines, we consider a small set of models with a tempera-
ture T = 7500 K, which is the median temperature con-
sidered by HM78. The pressure P varies from 10−3 to
1 dyn cm−2, with 7 points per decade. Concerning the
thickness D of the prominence, we adopt a relatively small
value of 100 km (which corresponds to a prominence fine
structure rather than to the whole prominence). In this
way, we keep the Hβ and 8542 Å lines optically thin for
most pressures, which is more convenient for comparisons
with analytical formulae. Slabs with larger sizes will be
considered in the next section. Other parameters are fixed
to mean values: the microturbulent velocity ξ to 5 km s−1,
and the altitude H to 10 000 km.

3.1. Hydrogen

One particularity of the hydrogen atom is that all the ex-
cited levels are closer to the continuum than to the ground
level, and that the distance between an excited level and
the continuum decreases rapidly with the level number.
One of the consequences is that the ratio (nj/nc), where nj
is the number density of atoms in level j and nc that of
protons, tends rapidly to its LTE value when j increases.
For the temperature of 7500 K and the different pressures,
we have computed the mean populations of levels:

Nj =
1
D

∫ D

0

nj(z)dz (2)

and the mean LTE departure coefficients:

bj =
Nj
Nc

(
Nc

Nj

)
LTE

=
Nj
Nc

1
NeΦjc(T )

· (3)

where Ne is the average electron density from the
model and

Φjc(T ) =
gj
2gc

(
h2

2πmekT

)3/2

ehνjc/kT (4)

(symbols have their usual meaning).
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Fig. 1. Mean LTE departure coefficients bj for the 4 first levels
of hydrogen, as a function of the gas pressure (dyn cm−2) in
the slab.

The bj are represented in Fig. 1, as a function of pres-
sure, for levels 1 to 4. For the ground level, the departure
coefficient is almost constant and close to 60, with a slight
decrease at high pressures. For level 3, it varies between 1
and 2 and, for level 4, between 0.7 and 1.2. For higher
levels, the departure coefficients are not represented, but
they are still closer to 1. Once b1 is fixed, it is possible
to evaluate approximately the electron density by assum-
ing that hydrogen is the only electron contributor, so that
Ne = Nc. With a helium-to-hydrogen number ratio of 0.1,
the state equation may be written as

P = (1.1NH +Ne)kT, (5)

where NH is the total hydrogen density. The populations
of hydrogen excited levels being usually negligible, we
have:

NH = N1 +Ne. (6)

From (3), we obtain:

N1 = b1N
2
e Φ1c(T ) (7)

which, combined with (5) and (6), gives the following
equation for Ne:

1.1b1Φ1c(T )N2
e + 2.1Ne =

P

kT
· (8)

Its solution is:

Ne = N0

(√
P

P0
+ 1− 1

)
(9)

with

N0 =
2.1

2.2b1Φ1c(T )
(10)
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and

P0 = 1.05N0kT. (11)

Numerically, if b1 = 60, we have N0 = 1.8 × 1010 cm−3

and P0 = 0.020 dyn cm−2.
The asymptotic values of expression (9) correspond to

two different regimes: at low pressures (P � P0), hydro-
gen is mainly ionized and the electron density is roughly
proportional to the pressure. For P � P0, hydrogen is
essentially neutral and Ne varies as the square root of P .

The intensity emitted in the optically thin Hβ line
directly depends on the emission coefficient and conse-
quently on the population of level 4. The intensity emitted
at frequency ν is

Iν = eνD (12)

with:

eν =
hν24

4π
N4A42φν , (13)

A42 being the spontaneous emission probability and φν the
normalized emission profile. By integration over frequency,
we obtain the total intensity emitted in Hβ by the slab:

E(Hβ) =
hν24

4π
N4A42D. (14)

One further approximation consists of assuming that the
LTE departure coefficient b4 is equal to 1, which yields
the following relation between the population of level 4
and the electron density:

N4 ≈ N2
e Φ4c(T ). (15)

Finally, we obtain:

E(Hβ) ≈ hν24

4π
A42DΦ4c(T )N2

e . (16)

Numerically, with ν24 = 6.17 × 1014 Hz, A42 = 8.40 ×
106 s−1, D = 100 km, Φ4c(7500 K) = 3.8 × 10−20, we
have:

E(Hβ) ≈ 10−18N2
e . (17)

Combining (9) and (16), we obtain an approximation for
computing the Hβ intensity as a function of the gas pres-
sure. In Fig. 2, we compare this approximation with the
intensities obtained from the detailed solution of radiative
transfer and statistical equilibrium equations. The two val-
ues agree within 30%.

The Eq. (16) indicates that the total intensity in the
Hβ line is roughly proportional to the square of the elec-
tron density, and consequently to the emission measure∫
N2

e dz. The same property was noticed for the Hα line
in our previous papers (Gouttebroze et al. 1993; Heinzel
et al. 1994). This property holds for all hydrogen lines,
provided that their upper level LTE departure coefficient
is close to 1 (or does not vary significantly with P and T ),
and that they are optically thin (or marginally thick). In
prominences, it is the case of almost all hydrogen lines,
except those of the Lyman series.
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Fig. 2. Comparison of Hβ total intensities emitted by the slab
(erg cm−2 s−1 sr−1), as a function of pressure (dyn cm−2).
Solid line: detailed computations; dashed line: approximation.

3.2. Calcium

As long as the 8542 Å line is optically thin, which is the
case for most models, its integrated intensity is propor-
tional to the population of the upper level of the transi-
tion, which is the fifth level of Ca ii. Thus, we derive for
this line a relation similar to (14) for Hβ:

E(8542) ≈ hν35

4π
N5(Ca II)A53D. (18)

This population of level 5 may be expanded as follows:

N5(Ca II) =
N5(Ca II)
N(Ca II)

× N(Ca II)
N(Ca)

× N(Ca)
NH

×NH. (19)

The term N(Ca)/NH represents the abundance of calcium
with respect to hydrogen. It is taken as constant and equal
to 2.19 × 10−6, as in GVH97 (HM78 use a very similar
value: 2.14× 10−6).

The term N(Ca II)/N(Ca) is the part of singly ionized
calcium relative to the total population of calcium. For the
models under investigation, the proportion of neutral cal-
cium is negligible. On the contrary, the determination of
the ionization equilibrium between Ca ii and Ca iii is a
critical point, and the inclusion of Lyman line radiation
field in the photoionization rates may change drastically
this equilibrium. Figure 3 shows the mean calcium pop-
ulations obtained with our test models, with and with-
out the inclusion of Lyman lines. When the Lyman lines
are included (Fig. 3a), the population of Ca iii is larger
than that of Ca ii for pressures lower than 0.08 dyn cm−2.
For very low pressures, the population of Ca iii may be
10 times larger than that of Ca ii. On the contrary, when
the Lyman lines are neglected (Fig. 3b), Ca ii popula-
tions dominate everywhere, except at very low pressures
(P < 0.003 dyn cm−2).
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Fig. 3. Mean calcium level populations as a function of the
gas pressure (dyn cm−2) in the slab. Ca i: dashed line. Ca ii,
ground level: solid line. Ca ii, excited levels: dotted lines. Ca iii:
dash-dotted line. Ca ii levels are labelled by order of increasing
energy. a) with Lyman lines included in photoionization rates
(upper panel). b) without Lyman lines (lower panel).

The term N5(Ca II)/N(Ca II) is the ratio of the pop-
ulation of the fifth level compared to the total population
of Ca ii, which is practically equal to that of the ground
state. In Fig. 3a, the curves corresponding to the different
levels of Ca ii seem to be approximately parallel, which
means that the ratioN5/N1 does not vary very much. This
variation is detailed in Fig. 4, which shows that this ratio is
effectively constant between 0.001 and 0.1 dyn cm−2, but
begins to rise at higher pressures. On this figure, we also
show the ratio corresponding to LTE, which is a function
of temperature (1.53 × 10−2 for 7500 K), and the “opti-
cally thin ratio”, obtained by solving the statistical equi-
librium equations with intensities defined by the incident
radiation, and neglecting collisions. This last ratio, which
is independent of temperature, is equal to 1.16× 10−4 in
the present case. Thus Fig. 4 shows that, at low pressures,
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Fig. 4. Population ratio (N5/N1) for Ca ii as a function of
pressure. Solid line: result of numerical computations. Dashed
line: optically thin limit. Dotted line: value corresponding to
LTE.

N5/N1 remains nearly equal to its optically thin value,
and begins to rise at high pressures to get closer to its
LTE value, when collisions cease to be negligible.

In the case where all calcium atoms are singly ionized,
i.e. where N(Ca II)/N(Ca) = 1, we can derive a simple
approximation for the intensity in the 8542 Å line. To this
purpose, we substitute in (19) N5(Ca II)/N(Ca II) with
its optically thin limit 1.16 × 10−4 and N(Ca)/NH with
2.19× 10−6. We obtain in this way:

N5(Ca II) ≈ 2.5× 10−10NH (20)

and, with the help of (18):

E(8542) ≈ 3.4× 10−9NH. (21)

If we combine this equation with the approximation (17)
for Hβ, we have:

r =
E(8542)
E(Hβ)

≈ 3.4× 109 NH

N2
e

· (22)

Since N2
e increases more rapidly with pressure than NH,

the approximation (22) corresponds to a decrease of r(P ).
However, this relation is not really useful in practice be-
cause, at the same time, the ionization ratio (Ca iii/Ca ii)
decreases with pressure, producing a non-monotonic vari-
ation of r(P ). This is illustrated in Fig. 5, where we com-
pare the approximation (22), the relation obtained by
HM78, and the two present numerical results, one ob-
tained in taking into account the ionizing radiation of
Lyman lines, and the other in neglecting it. The approxi-
mation (22) and the relation of HM78 are continuously de-
creasing. The relation obtained in neglecting Lyman lines
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Fig. 5. Ratio of line intensities r = E(8542)/E(Hβ), as a func-
tion of pressure. Solid line: present computations, with Lyman
lines included in photoionization rates. Dashed line: same com-
putations with Lyman lines omitted. Solid line plus dots: re-
sults of Heasley & Milkey (1978). Dotted line: approximation
defined by Eq. (22).

is generally decreasing, except at high pressures. The rela-
tion obtained with full Lyman line radiation is relatively
flat with a maximum near 0.008 and a minimum near
0.2 dyn cm−2. The difference between our two calculations
may be understood from Fig. 3: on (3b), Ca ii dominates
Ca iii for P > 0.003 while, on (3a), it is true only for
P > 0.2.

4. Statistical study

In order to investigate the diagnostic value of the ratio r,
it is necessary to study the intensity variations of the Hβ
and 8542 Å lines when all relevant parameters vary simul-
taneously. In the past (Gouttebroze et al. 1993), we used
a grid of models with fixed values for the different param-
eters. However, the number of models required by such a
procedure increases rapidly with the number of parame-
ters and, for this reason, we allowed only variations for
3 parameters (temperature, pressure and thickness) and
fixed the microturbulent velocity and the altitude to con-
stant values. In the present study, we use a different ap-
proach: we attribute to each parameter (T , P , D, ξ andH)
a range of variation and, for each model, we choose ran-
domly the parameter value within the corresponding range
of variation. These ranges of variation of the parameters
are indicated in Table 2. Within each range, the prob-
ability density is taken as constant with respect to the
logarithm of the parameter (for instance, there are statis-
tically as many models with T between 5000 and 6000 K
as between 15 000 and 18 000 K). With this procedure, the
number of models becomes rather arbitrary. In addition,
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Fig. 6. Intensity in the Ca ii 8542 Å line vs. intensity in the
Hβ line, for 250 prominence models with random parameters.
Symbols indicate the temperature of the model: circles: 4000
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“×”: 10 000 to 15 000 K; “+”: 15 000 to 20 000 K.
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Fig. 7. Line intensity ratio r as a function of pressure
(dyn cm−2). Symbols indicate temperature as in Fig. 6.

the set of models so obtained bears more resemblance to
observations than a grid of models with regularly spaced
parameter values.

In Fig. 6, we have represented the intensity emitted in
the calcium infrared line as a function of that in the Hβ
line. For clarity, the number of models has been limited
to 250, and the temperatures are indicated by different
symbols. It appears that, if we exclude the models with
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Table 2. Ranges of variation for model parameters.

quantity symbol unit minimum maximum

temperature T K 4000 20 000
gas pressure P dyn cm−2 0.001 1
thickness D km 100 5000
microturbulent velocity ξ km s−1 2 8
altitude H km 3000 30 000

a temperature larger than 10 000 K (represented by “×”
or “+”), there is a very good correlation between the in-
tensities of the two lines for low or moderate intensities.
This means that, at moderate temperatures or pressures,
the ratio of the two lines is practically independent of
the other three parameters. At temperatures higher than
10 000 K, the intensity of the calcium line decreases with
respect to that of the hydrogen line. These conclusions
are confirmed by Fig. 7, which represents the ratio r as a
function of pressure. For temperatures lower than 10 000 K
and pressures lower than 0.1 dyn cm−2, r undergoes only
small variations, and generally remains between 0.2 and
0.3. At high pressures (0.1 to 1 dyn cm−2), the behaviour
of r appears to be strongly dependent on temperature:
rapidly increasing below 6000 K, moderately increasing
between 6000 and 8000 K, and generally decreasing at
higher temperatures.

In order to quantify this relation with pressure and
temperature, we computed line intensities for a larger set
of about 4000 models and, for different ranges of temper-
atures, we used a least square technique to derive approx-
imate relations for r(P ). This procedure is illustrated in
Fig. 8, for the temperature range [6000, 8000 K]. The fit
function is a polynomial of the fourth degree:

log(r) =
5∑
i=1

ai [log(P )]i−1
. (23)

The use of polynomials of higher degrees does not pro-
duce any significant decrease of the standard deviation.
Figure 8 also shows the dispersion of the results, which is
small below 0.1 dyn cm−2, and increases rapidly above.
This is due to the fact that, at low pressures, the intensi-
ties are roughly proportional to the thickness of the slab
while, at high pressures, their dependence on D becomes
nonlinear. The same operation was performed for 5 differ-
ent ranges of temperature, and the results are displayed in
Fig. 9, which confirms the existence of a change of trend
of r(P ) around a temperature of 8000 K. At lower tem-
peratures, r(P ) is increasing at high pressures, while at
higher temperatures it is decreasing. The coefficients ai of
Eq. (23) are given in Table 3.

5. Discussion and conclusion

There is another parameter which was not discussed in
the preceding sections: the abundance of calcium. Its ef-
fect on the value of r is simple, as long as the two lines are
optically thin, which is usually the case: the intensity of
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Table 3. Coefficients of polynomial (23) for 5 different temperature ranges [Tmin, Tmax].

Tmin Tmax a1 a2 a3 a4 a5

4000 6000 0.1552 0.8131 −0.0885 −0.2532 −0.0545
6000 8000 −0.1914 0.3138 −0.3913 −0.3639 −0.0723
8000 10 000 −1.2783 −0.0229 0.6117 0.3080 0.0417
10 000 15 000 −2.2918 −0.0574 1.4673 0.7451 0.1031
15 000 20 000 −2.8906 −0.0851 1.5691 0.7466 0.0982

the 8542 Å line is proportional to the ratio (Ca/H), while
that of the Hβ line is independent of this ratio. As a con-
sequence, r is practically proportional to (Ca/H), except
for a few models with high values of P and D.

So, as long as (Ca/H) remains close to 2.2× 10−6, the
ratio r remains in the range [0.2, 0.3] for low or moderate
pressures (P < 0.1 dyn cm−2). At higher pressures, r(P )
increases if the temperature is lower than 8000 K, and
decreases for higher temperatures. We can compare these
results with the observations quoted in Table 1. In par-
ticular, Stellmacher & Wiehr (2000) observed two promi-
nences, one bright and one weak. Concerning the bright
prominence, they obtained values of r between 0.15 and
0.40, with a maximum of occurence near 0.28. In this case,
our calculations have little diagnostic value since, as may
be seen in Fig. 7, models with any pressure may produce
such values of r. On the contrary, the faint prominence
observed by the same authors is characterized by higher
values of r, in the range [0.5, 0.8]. Such values are found
at pressures larger than 0.1 dyn cm−2 and temperatures
lower than 8000 K (and principally, lower than 6000 K).
This would suggest the existence of cool and relatively
dense cores in this object. In this respect, it is interesting
to note that Stellmacher & Wiehr (2000) report a relative
constancy of r over whole prominences. With our results
for r ≈ [0.2, 0.3], this means that their bright prominence
can have internal pressure variations in the range, say,
P ≈ [10−3, 10−1 dyn cm−2]. But for the fainter promi-
nence, it is rather difficult to understand the constancy
of r. Therefore, new observations are required to check this
behaviour. It is also interesting to note that, in prominence
models based on magnetohydrostatic equilibrium (such as
those of the Kippenhahn-Schlüter type), the pressure in
the core of the prominence is much higher than in the
external medium (see Heinzel & Anzer 2001).

Finally, there remain certain uncertainties concerning
the interpretation of the relatively high values of r (>0.5)
observed in some prominences. This may be the signature
of cold and dense structures, but might as well be the
result of a local calcium abundance higher than ex-
pected. Other mechanisms, like e.g. an increased incident

radiation from a surrounding plage, seem to reduce r to
even lower values. This illustrates the fragility of diagnos-
tics based on the intensities in two lines only. The present
computations produce not only integrated intensities in
the Lyman, Balmer, Paschen lines of hydrogen and in-
frared and resonance lines of Ca ii, but also the profiles of
these different lines. So, the future of prominence diagnos-
tic is certainly based on multi-line comparisons between
computations and observations and, when the spectral res-
olution is sufficient, on the use of line profiles.
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