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Abstract. We present a new method for the solution of non—
LTE scattering problems in two dimensions. It is based on Ac-
celerated Lambda Iteration and an improved short characteristic
method. It is more than an order of magnitude faster than a di-
rect approach for Complete Redistribution. We, further, have
extended the method to the solution of Partial Redistribution
problems. The computational cost of treating PRD with the new
method is only a small factor larger than CRD. Results with the
new iterative approach are in complete agreement with previ-
ously published results.
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1. Introduction

In order to predict the emergent radiation from astronomical
objects of finite size it is clear that we must be able to include
the effects of losses through the multiple boundaries. The study
of solar prominence resonance lines (Vial 1982) showed that
two—dimensional (2D) radiative transfer improves the agree-
ment between emergent profile computations and observations.
The non-LTE modeling of spectral lines observed in isolated
structures in radiative interaction with neighboring regions, such
as solar prominences, needs to take into account the effects
of lateral radiation transfer, which in turn requires a multi—
dimensional geometric description of these structures.

To advance this two—dimensional modeling effort, however,
new algorithms are needed, both to reduce the computational
cost as well as to improve the level of physical approximations
used. The computations of Vial (1982), for example, were per-
formed with the two—dimensional radiative transfer code devel-
oped by Mihalas et al. (1978; MAM). This code suffers from
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two limitations: even on the fastest available computers it is so
computationally intensive as to preclude its routine application,
and it can only treat complete frequency redistribution (CRD) in
a two—level atom. However, it is now well established that par-
tial redistribution (PRD) effects are important in the wings and
near wings of the strongest lines. The computations of Heinzel
et al. (1987) show, for example, theoretical Lyman « profiles
with strong symmetrical peaks which are caused by the par-
tially coherent penetration of the incident solar chromospheric
profile.

We present here a set of techniques to be used for the effi-
cient solution of 2D radiative transfer problems both in CRD and
PRD. The numerical methods used to solve the transfer problem
in the presence of scattering are based on the work of Olson et
al. (1986; OAB). That approach is reviewed in Sect. 2, and the
Short Characteristic (SC) method for the efficient solution of
the two—dimensional transfer problem is then presented in Sect.
3 and Sect. 4. The material on 2D transfer is an extension of the
work of Kunasz & Auer (1988) with an important improvement
with respect to the ability to treat sharp edged beams. In Sect. 5
the OAB technique is combined with the short characteristic ap-
proach and applied to the two—dimensional complete redistribu-
tion case. The results are in agreement with those obtained with
the MAM code, but are obtained with more than a magnitude
less computing time. In Sect. 6 the one—point approximate oper-
ator of OAB is extended to the solution of the two—dimensional
partial redistribution problem. The resulting method is some-
what similar to that proposed by Scharmer (1983) and can solve
for the full frequency dependent source function in only a few
times as much computing as required for the CRD case. Fi-
nally, we compare PRD to CRD effects on a theoretical case
in Sect. 7.

2. Iterative solution of scattering problems

In Olson et al. (1986, OAB hereafter) it was demonstrated that
the basic problem with the convergence of A-iteration could
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be overcome simply by using the diagonal of the A operator as
an approximation to the full operator. This, in effect, permits
optically thick layers to remain in equilibrium with themselves
when the source function is corrected. Roughly speaking, in-
formation is propagated one layer rather than one optical depth
per iteration. This is a dramatic improvement when dealing with
cases with large total optical depths.

Application of the OAB approach is extremely simple. The
exact scattering problem may be formally stated, for both co-
herent scattering and complete redistribution, as the solution
of
S(t)=(1 - eA(S)+eB )

In order to solve this system numerically, the continuous run
of S(7) is replaced by a set of discrete values, Sy =~ S(74), using
implicit interpolation to “fill in” the missing values between the
grid points. The resulting system, the solution of which we are
addressing here, is

Sd =(1- E)ZAd,d’Sd’ +(1 — e)j(]iBC + EdBd
dl

@

The BC term is due to radiation incident on the boundaries.
Equation (2) is a set of linear equations which, in principle,
may be solved directly; however, if there is a large number of
grid points, such a direct approach is impractical. First, because
it requires the construction and storage of the full A matrix.
Second, because the time required to solve the equations scales
as the cube of the system size.

In order to obtain an iterative method for solving Eq. (2),
we introduce a one—point approximation to the full A operator

Z Mg (Sar +6Sar) = Jg + Mg 4654 3)
d/

where .J is the average intensity defined by

jd = Z Ad,d'Sd' + j‘?c (4)
dl

Because the effect of the 6.5 is approximated by a one—point
operator, which is the diagonal of the true A operator, the per-
turbation of S at depth point d affects only that same depth point:
8Jy =~ Aq4,46S4. The discrete representation of the A operator
is a full matrix. The approximate operator is a diagonal matrix.
Combining Egs. (2) and (3) yields the scalar equation for the
computation of 6.5

(1 — €4)Jq + €aBy — S
1—(1—eAga

65 = ®

Here S is used for the current estimate of the source function,
and J the average intensity evaluated by applying the A operator
to those S. The corrected value of the source function is given
by

Sld =Sq+654 (6)
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As proven in OAB, the choice of the diagonal yields a scheme
which is absolutely guaranteed to be convergent.

The iterative cycle consists of the (a) evaluation of J = A(S),
(b) computation of 6.5, and (c) correction of the source function.
Although we have written in Eq. (4) the contribution of the
source function to the scattered radiation as an explicit sum,
operationally this term needs not to be evaluated in this manner.
All we require is the value of J. This can be found by whatever
means is most advantageous.

The critical point about this iterative scheme is that it is
local. That is, the changes at a point involve only values at that
same point in the grid. The subscript d points to some location
in the spatial grid. There is no restriction on the structure of that
grid. This correction scheme is as valid in multiple dimensions
as it is in one dimension.

In order to extend the OAB iterative technique to implicit
scattering transfer problems in two dimensions we must have
two things. The first is a method for the efficient solution of the
explicit transfer equation, i.e. the evaluation of J = A(S) at all
grid points for a known set of S4. The second is the exact diag-
onal of the effective A operator corresponding to that method
of solution. Even though it may not be necessary to know the
values of the elements of the A operator explicitly in order to
find J, it is important to use the exact values of the diagonal of
this operator in the iterative cycle. (In OAB an approximation
was suggested for estimating the diagonal; however, such an
approximation may impair convergence and should be avoided
if possible. It is much better to evaluate the diagonal exactly
using the fact that Agq = A(6q,a'); that is, it is equal to the result
of applying the A operator in the case where only one value of
the source function is non—zero). Given these the solution of the
implicit scattering problem is straightforward.

3. Solution of the two—dimensional transfer problem

In order to implement our iterative technique, it is imperative
that the solution to the formal transfer problem be obtained
with the greatest speed. The obvious idea, long characteristics,
involves using a set of rays, one for each of the angle quadrature
directions, going through each point in the grid and extending
across the entire grid. Values of quantities along the rays are ob-
tained by interpolation. The intensity at the one point is found
by solving the radiative transfer equation along the entire ray.
This is obviously inefficient. If N is a measure of the number of
points in both the y and 2z coordinates, the time for solving the
one—dimensional transfer equation along each long character-
istic ray scales as N. The time to evaluate the average intensity
at all the grid points, therefore, scales as N3,

Fortunately as demonstrated in Kunasz & Auer (1988) the
efficiency of the solution of the two—dimensional radiative trans-
fer problem is dramatically improved by the use of short charac-
teristics. Instead of traversing the entire space, the short charac-
teristics start at a grid point and extend in the “upwind” direction
until they hit one of the cell boundaries, as shown in Fig. 1. In
this figure the ray is propagating from the upper right and, there-
fore, these are the boundaries along which the intensity for this
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Fig. 1. Short characteristics at grid point O for a ray propagating from
the upper right. The upwind point is 1. The radiation for this direction
is known at all the darkened grid points

direction is a priori known. We step through the mesh propagat-
ing this information by using short characteristics to calculate
the “downwind”, unknown intensities. For example, in Fig. 1,
we need to calculate the intensity at 0. We can evaluate this
quantity simply by integrating across the cell from 1 to 0. The
intensity at O for this direction is

AT[

Ip=TLe 2" + S(r)e~"dr

Q)
0

Evaluation of the integral in Eq. (7) is straightforward once
we have estimated the values of the source function at the points
1 and 2 of Fig. 1. Because these do not lie at grid points they
must be interpolated.

In order to recover the diffusion approximation, it is neces-
sary to use parabolic or higher order interpolation in the evalua-
tion of the integral. Not doing so would lead to serious errors in
situations with high scattering. We may find the desired formula
by implicit interpolation over (.52,50,S51) and then analytically
integrating the interpolant S(7) = Sp+¢; T +c,7% which implies

AT]
S(me Tdr = Sywg + crw; +

®

0

The coefficients of which may be efficiently expressed in terms
of the differences of the source functions

di = (So — S1)/AT
dy = (S, — So)/ A1y

Ccr = (dzATl + dlATz)/(ATl + A’T‘2) (9)
c2 = (dy — dy) /(AT + AT))
with the weights
wo=1—e Am
w) = wWo — AT]G_Aﬂ (10)

wy = 2wy — A7{ e~An

This definition of the weights shows that they may be recur-
sively generated. In the first interior row or column we do not
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use quadratic interpolation. No change in the quadrature for-
mula is needed, however. One simply sets ¢; = d; and ¢; = 0,
which forces linear interpolation at the boundary. (Note that
since the boundary layer is normally optically thin, the use of
linear interpolation there does not introduce significant error).

Once we have the weights in Egs. (9-10), exact evaluation
of the diagonal of the A operator is simple. At each point one
sums over all directions with the d’s in Eq. (9) defined by setting
So = 1, and taking the other .S as 0. With the exception of
the inclusion of the contribution from the off-diagonal source
functions, the short characteristic formal solution of the transfer
equation for J, i.e. Eq. (4), and the computation of the diagonal
of the A operator are formally identical and code for performing
these tasks can be shared.

The problem with using Eq. (7) is that I; is not explicitly
known. Only the intensities at the grid points — marked as dark
spots — are known yet. Its value, however, is easily determined
by interpolation along the upwind grid line. As long as we sweep
the grid moving away from one or both of the boundaries, the
values of the intensity in the upwind direction will have been
determined and interpolation of the upwind boundary values for
the short characteristics will be possible. The time to evaluate the
radiation is directly proportional to the number of grid points;
thus, the time to calculate the radiation field should vary as N2
which is a factor of N better than with long characteristics.

The first step in the computation is the specification of the
geometric weights. These depend only on the grid and the angle
quadrature set. Once these have been fixed, the interpolation
weights for each direction may be found. They do not depend
on either the transition or frequency. As the algorithm for the so-
lution of the scattering problem is iterative, from the standpoint
of efficiency it is desirable to store these data either internally,
or on external storage, buffering the input to minimize the time
spent in their recovery.

The grid must be swept in an order which moves away from
the one of the upwind boundaries. Let the cosines with respect
to the axes of the direction into which the photon is moving
be (cy,c,). Then, for example, if ¢, > 0, we must evaluate the
points in order of increasing y, or if ¢, < 0, we must start
at the largest z and step toward the other boundary. In order to
minimize the storage, one evaluates all the intensities I;;(cy, c;)
along the line z = z; before advancing to j = j & 1, where the
sign of the increment is the sign of c,. The storage of upwind
values is discussed further below.

The other problem is to determine on which axis, y or z, the
upwind point lies. This is done for Cartesian coordinates by a
simple test. If Ay is the interval in y back to the previous y—grid
line, and Az is the interval back to the previous z—grid line, then
if Ay/ec, < Az/c, the ray hits the y—axis and the length of the
step is Ay/cy; otherwise, the upwind point lies on the z-axis,
at the distance Az/c, along the ray. The interpolation weights
follow once these quantities are known. For interpolation in y,
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if the upwind point is at y, < ¥ < y» < y. or the reverse order
but with y still in the interval (ya,p),

Wa = W — VW — ¥)/Wo — Ya)Ye — Ya)
Wo = Wa — YWe — ¥)/Wa — Y)Ye — Ub)
We=Wa — WY — ¥/ Wa — Y)¥Ub — Yc)

11

For interpolation in z, the formulae have identical forms.

It does not matter whether one makes the y or the z—axis the
outer loop. It is only necessary to step through the grids in the
order just discussed, away from one of the upwind boundaries.
The requirement is that the intensities at the upwind points be
known before the short characteristic is evaluated. This is guar-
anteed by the following, assuming that 2z is the more slowly
advancing axis, for all the y; points along the z; line, given
all the intensities for the direction under consideration on the
upwind grid line, on the downwind line

" (1) evaluate those points which interpolate in y then,

(2) evaluate those points which interpolate in z.

After all the y—grid values have been calculated, advance to
the next z-line. The operational reason for splitting the points
into the sets used in steps (1) and (2) is that the transfer for the
points in step (1) is completely independent and, therefore, can
be made in a fully parallel manner, but unless the intensities
at these points have been determined, it will not be possible to
interpolate all the upwind values needed in step (2).

To conclude the remarks about the interpolation, we should
note that we have felt it important to retain symmetry between
the axes with respect to the order of the interpolation. On the
interior lines high order symmetric interpolation is possible in
y, but only asymmetric interpolation is possible in z; in order
to maintain equivalence between the two directions we, there-
fore, use parabolic interpolation for both directions. Along the
first interior lines, however, sufficient data for parabolic inter-
polation is not always available, and here we use linear upwind
interpolation.

4. Notes on implementation of the formal solution

The efficiency obtained by the use of short characteristics
to solve the two—dimensional radiative transfer problem was
demonstrated in Kunasz & Auer (1988), but in order for this
technique to become a fully practical method, two details in the
implementation must be addressed: (1) the generation of “spu-
rious” upwind intensities by high order interpolation, and (2)
the efficient use of both vectorizing capabilities and memory.
Both of these will be discussed here.

Note that for simplicity we will present only the example of
interpolating I(y) at an y in the interval (y,, yb) using the upwind
values I, I, I, and parabolic interpolation. Cases for different
intervals or the z—direction are formally identical except for the
indices.

4.1. Monotonic interpolation

As shown in Fig. 2, even if the values at a succession of points
has monotonic order, e.g. I, < I, < I, or the reverse, parabolic
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Fig. 2. Even though the values at x=0, 1, 2 are monotonic and greater
than or equal to 0, parabolic interpolation generates a new extremum
and “spurious” negative values

Fig. 3. Parabolic interpolation causes negative intensities in a sharp
edged beam, making zero intensities appear gray in this half-tone plot

interpolation of the upwind intensities can generate a new ex-
tremum, that is a value greater or less than the maximum or
minimum of I, and Iy. Although the values at the grid points
are monotonic, the interpolated values may not be. The poten-
tial seriousness of this phenomenon is seen by noting that if
I, = I, = 0 but I, = 1, which corresponds to the edge of a sharp
beam, I(y) is negative for all ¥y, < y < yp, which is physically
impossible. Similarly, if I, = I, = 1 but I, = 0, the interpolated
I(y) is larger than 1, which means that parabolic interpolation
can potentially introduce spurious sinks and sources, even if all
the upwind values are “reasonable”.

The disastrous consequences of this negative overshoot are
demonstrated in Fig. 3. Here we present a half-tone picture of
the propagation of a sharp edged beam in a vacuum computed
using short characteristics. The interpolation error produces a
trough of negative intensities alongside the beam. The general
gray background is caused by the fact that although these regions
have zero intensity, they are mathematically not as dark as the
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“darkest” values which have been incorrectly set less than zero!
It is the rectification of this error that we now address.

The intensity is, of course, an integral over the upwind
sources, and incident intensity. To the extent that the spatial
variation of the sources is resolved by the gridding, the varia-
tion of the intensities will likewise be smooth on the grid, and
there will be no interpolation difficulties. Problems arise when
there are unresolved variations in the upwind sources and/or
sinks, in particular when there is a step function variation in
these quantities. This corresponds to an infinite derivative and
invalidates the use of smooth interpolation. The problem is to
recognize automatically when one has encountered such a situa-
tion. A partial answer is provided by the fact that if the structure
has been resolved, and the intensity is monotonic at the grid
points, then the intensity must also be monotonic at interme-
diate positions. In order for there to be subgrid structure in the
radiation there must be subgrid structure in the material, which is
contrary to the hypothesis that the material variations have been
resolved. If, in fact, the interpolated values are not monotonic,
the “existence” of a new extremum is due to errors introduced
by the interpolation and should be discarded.

Mathematically, we insist that if (I, I, I;) are monotoni-
cally ordered,

min(ly, Iy) < I(y) < max(ly, Iv)

i.e. that the interpolation does not introduce non—monotonic
behavior in the upwind radiation. All we may a priori assert
is that I(y) is bounded by the interval (I,,Ip). Accordingly, we
might use linear interpolation in order to guarantee the ordering,
as was done by van Leer (1977). We argue that while this will
avoid the generation of spurious extrema, it will not improve the
accuracy of the calculation relative to a simpler approach. The
origin of the breakdown of the interpolation is usually that we
have near step function variation in the upwind quantities. This,
of course, is hardly better interpolated by a linear formula, than
by a high order formula. The effect of linear interpolation is to
introduce a spurious dispersion of a “hard edged” beam. Instead
we suggest setting I(y) equal to the minimum or maximum of
I, and I, if the parabolic interpolant lies outside the permitted
interval. The formal accuracy of this scheme is only zeroth order
but in fact it is “exact” for the case of greatest interest, the step
function. As stressed by Boris & Book (1973) in the presence
of near singularities, the “formal order” of the interpolation is
irrelevant, because the behavior simply cannot be approximated
by polynomial interpolation. As shown in Fig. 4, the results from
the linear and min—-max approaches are essentially identical.
Although both suppress the spurious interpolation values, and
give a reasonable representation of a propagating beam, neither
is entirely successful in suppressing the numerical dispersion of
the ray. The origin of that dispersion is the inherent coarseness
of the information which is being interpolated. That data do
not give information on where the edge of beam lies exactly
between the grid points. No matter what order of interpolation
is used, it is impossible to estimate where the edge of a square
beam lies, only that it is “somewhere between these two grid
points”.
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4.2. Minimization of storage

In order to interpolate the upwind intensities, the frequency de-
pendence of the intensity must be available. Given the poten-
tially large number of frequency quadrature points, it is impor-
tant to note that the full set of information has to be stored only
for the current and two previous rows. That is, for the com-
putation of the profile weighted average intensity, J, used in
CRD scattering problems, frequency dependent information is
only required for three rows. This storage is simply cycled as
one moves through the grid for a given direction. The contribu-
tion from the various frequencies are added to average intensity
integral, J, as they become available.

4.3. Vectorization

It is trivially guaranteed by making the inner loop run over fre-
quency. In fact, from the standpoint of efficiency it is optimal to
solve for the radiation field in all frequencies simultaneously, i.e.
in all transitions, if more than one is being treated, as this maxi-
mizes the vector length being worked on. All geometric factors,
such as the physical length of the short characteristics, are the
same for each transition. With the exception of the opacity and
emission there is no difference in the way different frequencies
are treated. Further, because the directions are absolutely inde-
pendent of each other, a potential major increase in speed can
be obtained by parallel processing the various directions.

4.4. Acceleration of convergence

While it is easy to show by the use of Greshgorin’s theorem
as was done in OAB, that the diagonal of the two—dimensional
A operator significantly improves the rate of convergence, the
resulting convergence is still relatively slow. It is, therefore,
highly desirable to improve further the speed with which the
solution is obtained. Fortunately, this can be achieved in a simple
manner, at very little computational cost.

Two general classes of methods are available for the accel-
eration of convergence: residual minimization and orthogonal
vector acceleration. They have been described in Auer (1991)
and are extremely effective for the multi-dimensional scattering
problem. The Ng (1974) extrapolation, and the ORTHDX (Auer
1991) method both add less than 1% to the computational cost
per iteration, but more than double the rate of convergence. Al-
though the convergence is still linear, the overall cost is reduced
by more than a factor of two by either of these techniques.

The effect of acceleration is demonstrated by the example
shown in Fig. 5. The problem being solved is for complete re-
distribution over a Doppler profile with e = 1073, and optical
depths 2 x 10° by 10*. The results are typical of all cases. The
unmodified convergence, using only the diagonal of the A op-
erator, is shown by 0. While this is clearly “working”, sixty
iterations will be needed to achieve an accuracy of 1079 in the
solution. The convergence obtained with second—order Ng ac-
celeration is shown by the filled circles. In this method, every
fourth iteration a least squares extrapolation has been made in
order to reduce the residuals (Auer 1987). The third sequence
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Fig. 5. The convergence rate is doubled by either residual (Ng) or
orthogonal (ORTHDX) minimization

shown is that obtained by ORTHDX of order 2. The convergence
is smooth and almost exactly double that of the original method.
Higher order versions of ORTHDX did not achieve appreciably
higher rates of convergence and are, accordingly, not recom-
mended.

The choice between ORTHDX and Ng acceleration is de-
termined by the availability of storage. ORTHDX in its second
order form requires two more scratch matrices, the size of the
matrix being solved, than the residual minimization algorithm.
If this is available, then ORTHDX can and should be used. If
not, Ng is still an effective alternative. In order to achieve the
same accuracy with Ng requires only about 5 more iterations
than ORTHDX.

As a final note, we should discuss the criterion for stopping
the iteration. Because even with acceleration the convergence

L.H. Auer & F. Paletou: Two—dimensional radiative transfer with partial frequency redistribution. I

Fig. 4a and b. Either a hard limiting, left or
b linear interpolation, right, may be used to
avoid overshooting

of the overall scheme remains linear, this can be treated in a
relatively general manner. If A S® is the maximum change in the
i~th iteration, then a upper bound to the error of the i—th iterate
is AS®/[1 — (ASED/ASD)]. This can thus be used to test
for the termination of iteration. If the estimated error is better
than the desired maximum error, you may stop the iteration
loop. We have used the requirement that AS/S < 10~2 x € as
our stopping criterion. The only requirement for validity of this
formula is that the ratio of AS between successive iterations
has become approximately constant. As we see in Fig. 5, this
requirement is relatively rapidly fulfilled.

5. Performance of the short characteristic method for the
two-level atom

The key concerns with respect to the utility of the short char-
acteristic method are its accuracy and speed. The results for
both are remarkably positive and confirm that this should be the
method of choice for the solution of two—dimensional radiative
transfer problems.

"The accuracy of the new method may be established by
comparison with the results of the MAM code using the same
angle quadrature and spatial grids. The short characteristic ap-
proach, which is based on iterative solution of an approximation
to the integral equations for the source function, is fundamen-
tally different from MAM, which is based on direct solution of
multi-dimensional difference equations. Thus, comparison af-
fords a direct check of the accuracy. We present, in Fig. 6, such
comparisons for Doppler profile cases with € = 1074, B = 1
and optical depths 7 = 10* along both sides of the slab. Ra-
diation, equal to B, is incident on both sides and the bottom.
Five points per decade of optical depth, which is 63 grid points
on each side, were used. In the figure, for each point in the
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Fig. 6. Agreement between source function calculated using short char-
acteristics and MAM for € = 10~ and 7 = 10*
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10* 1 1 1 ! l I ! 1
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width
Fig. 7. Contour diagram of log(S(y, z)). Note that, as in MAM, the
same double logarithmic grid used in the computation has been used
in this plot. This resolves the behavior at the boundary, but compresses
the inner optically thick region

10*

two—dimensional grid we have plotted the values of the source
functions computed using the two methods against each other.
There is a nearly perfect 45° slope over the factor of 100 range
in the source function. The worst disagreements are AS/S =
2.6% and occur in the optically thin boundary.

The results for S(y, z) itself are shown in Fig. 7. We note, in
particular, that the SC method recovers the correct asymptotic
behavior with S = B at high optical depths and Syygsce = /€B
in the middle of the sides where loss through the other sides
becomes negligible.

The relative timing of the MAM code and the SC meth-
ods for the solution of non-LTE scattering problems are shown
in Fig. 8. For typical grid sizes, with N > 50, the short char-
acteristic method is more than an order of magnitude faster
than the direct solution of MAM. The data used here is the re-
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Fig. 9. Timing for converged solutions on a VAX 8650 computer. The
dependence on N is clearly quadratic as shown by the fitted curve

ported CPU time for runs on a Cray—2 computer (Paletou 1992).
Square grids, with optical depths 10* on a side were used, as
were € = 10~* and Doppler profiles. Convergence was acceler-
ated using Ng’s method for residual minimization. The solutions
were iterated until accuracies better than 10~2 x € had been ob-
tained after, roughly, 25 times.

Itis striking to note how far away both timing curves lie from
the theoretical prediction for a dense system of linear equations.
The size of the set of linear equations for the two—dimensional
scattering problem, Eq. (2), scales as N2. If the matrices were
dense, the solution time should scale as NS, In fact the two—
dimensional transfer systems are not dense and, both the MAM
and SC approaches take this into account. The timing of MAM
is, according to this data, best represented as an exponential in
N. The timing of the SC method is roughly linear in N. This
later result is particularly perplexing if one considers that the
number of unknowns is increasing as N2, For N < 100 the time
for solution increases slower than the number of unknowns.
Of course, this is simply a reflection of the relative sizes of
terms in the polynomial as a function of N and that we have
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used the full run time in the plots. For larger values of N or
with more careful timing the curve for the timing of the SC
solution is clearly non-linear, as is shown in Fig. 9 for a VAX
computer. The efficiency of the SC method is so great that two—
dimensional transfer computations, even for multi-level atoms,
are entirely feasible using modest computers (Auer et al. 1993,
in preparation for publication).

6. Solution including the effects of partial frequency redis-
tribution

Our approach to the solution of the transfer equation includ-
ing the effect of partial redistribution is, like Scharmer (1983),
based on the use of an approximate operator technique. We,
however, both use a different approximate operator and apply
iterative acceleration (Auer 1991) to achieve a technique which
solves the two-level atom scattering problem with partial redis-
tribution and is only a small factor more computationally expen-
sive than the complete redistribution case. Further, our approach
to the PRD problem is completely compatible with the multi—
dimensional short characteristic method described above, so we
can take full advantage of the efficiency of this method for the
treatment of two—dimensional cases. Remarkably, we can now
solve the PRD scattering problem faster than the MAM ap-
proach could solve the CRD scattering problem.

The effective two—level atom source function in the presence
of an overlapping continuous opacity may be written

XLQS,,S’,; + kB
S, ==+
XL¢I/ +K

where i is the line opacity, x the continuous opacity, and ¢,,
the line profile. The line source function including partial redis-
tribution may be written

(12)

SL=(1-¢€)J,+eB (13)

where the interchange among frequencies has been included in
the definition of

J, = ¢;1 /R(l/, VY, dv' (14)
which integrates the average intensity, J,, against the angle
averaged redistribution function. The frequency and angle av-

eraged intensity which appear in the complete redistribution
source function

St=(1—e)J+eB 15)
is the familiar
J= / by Jydv (16)

although one must be careful to remember that the J,, appearing
in Eq. (16) refers to the result obtained with the true PRD source
function, as given by Eqgs. (12-16). Formally, we may write

(XL¢u'S,],“/ +kB

STYETER

J= / $ur oy (S,)dv' = / Gur o
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or

J=L(SL) + J, (18)
where we have introduced, for notational convenience, the new
operator L(S%), which is just the ordinary A operator with the
appropriate ratio of the line to total opacity as a weighting factor.
‘We may further define the difference between the CRD and PRD
line source functions as

SL =Sl 4+ ASE (19)
with
ASE=1-eJ, - J) (20)

Note that, the AS,‘; is not a correction. It is used to stand for the
difference between the two average intensity integrals.

The iteration for the frequency dependent partial redistri-
bution scattering source function consists of two nested loops.
In the outer loop, using the current estimate of S,';, we evalu-
ate ASL using Eq. (20). We hold this quantity fixed during the
“inner” iteration cycle which tries to solve the system

St = (1 — e)(L(S™) + J) + (1 — ) L(ASL) + eB Q1)
or

St =(1-eLiS" ) +r (22
with

r=(1—e)J. + L(ASY)) + eB (23)

During the solution of Eq. (22) the spatially variable residual
vector, r, defined by Eq. (23) is held fixed and we seek only to
find a ST which satisfies Eq. (22). In his presentation, Scharmer
advocated the solution of the system as if it were areal two-level
CRD problem because the mathematics underlying Eq. (22) and
the CRD case are analogous.

We use, instead, an extension of the one—point approximate
operator technique proposed in Olson et al. (1986). In that tech-
nique, one assumes the distribution of .S has been discretized
and the spatially continuous A operator has been replaced by a
discrete matrix operator, i.e L(S) ~ 3 Lq 4 Se. When iterat-
ing, the full matrix is simply approximated at each frequency
by the diagonal of the full matrix. Thus, in order to find a better
solution to Eq. (23), we correct the current estimate of S* by
letting S* — ST + 6™, approximating the full L operator by
its diagonal and then solving for the correction to S'. If this is
done, we will have at each spatial grid point
SY+6S%=(1—€)L(S™) + (1 — e)L.(6S™) +r (24)
which gives for each point the correction to the current estimate
of the S™

L (1—eL(SY)— S +r
85" = 1—(1 —e)L,

25
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The diagonal one—point approximation to L() is derived by using
the diagonal of the frequency dependent A, operator appearing
in Eq. (17), weighting it by the value of the appropriate combi-
nation of the profile function and opacities and then integrating
over frequency

XL¢2 * /
L = ——r ’
i / X by + K7 v (26)
where we have designated the diagonal of the monochromatic
A operator by A%.

The “inner iteration loop” consists of using the approximate
operator from Eq. (26) in Eq. (25) in order to find an adequately
corrected S satisfying Eq. (22) for the current 7, defined by
Eq. (23). The run of r is held fixed in this inner loop. Once
the new S™ has been determined, it is substituted into Eq. (19)
to get an estimate for the frequency dependent source func-
tion, SI,;, which in turn is used to compute the values of J, and
ASE. This constitutes the “outer iteration”. The convergence of
the predicted values of the ASL is accelerated by exactly the
same residual minimization techniques as are described in Auer
(1991) for the CRD problem although here they are applied to
the full frequency dependent quantity.

For maximum efficiency it is essential to note that the “inner
loop” is computing a correction to a correction, and, therefore,
does not need to be computed to a high degree of accuracy. In
fact, we have found that one needs only about 3 accelerated
A-iterations, Eq. (25), in the inner loop, in order to achieve the
best possible results for the overall convergence. That is, even
if one were to iterate the inner loop to “perfect” convergence,
the outer loop would not converge any faster. The convergence
rate for the PRD source function, which is being found in the
outer loop, is roughly the same as for the CRD case. Although
the increase in the number of A—iterations is non—negligible, the
factor is relatively small, on the order of three times as many.
The speed of the PRD calculation becomes even more impres-
sive when one notes that one is now solving for Nfrequency times
as many values. That is, rather than a single frequency inde-
pendent source function, we are determining the full frequency
dependent PRD source function for only a small factor more
computation time.

It is important to note that there is a serious potential diffi-
culty with the PRD iteration technique we have presented here.
In a low density plasma, a resonance line like Lyman « scatters
coherently in the atomic frame. The only source of frequency
redistribution in the laboratory frame is the physical motion
of the atom and the change in Doppler shift between absorp-
tion and emission. The frequency shifts are on the order of a
=+1 Doppler width. If the medium is still optically thick many
Doppler widths from line center, the scattering in the far wings
becomes approximately coherent in the laboratory frame. The
L, operator which is based on complete redistribution is obvi-
ously a poor approximation for the far wing. Fortunately if one
is dealing with slabs of finite optical thickness, this potential
problem may not actually cause difficulty. In Fig. 10 the degree
of coherence is shown for a (Voigt) line profile with a = 1074,
The abscissa, ¢, is the ratio of the optical depth at frequency
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Fig. 10. If a slab is optically thick enough, scattering in the far wing
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Fig. 11. Even 40 Doppler units from line core where the scattering is
very coherent, there is no difficulty in convergence for optical depths
like 10°

v to the total optical depth. If a finite slab becomes optically thin
at a small enough frequency, the asymptotic coherence of the
redistribution does not present any difficulty. Similar remarks
apply to the semi—infinite case with either an overlapping con-
tinuum or a non—zero collision rate. Here the relevant quantity is
the coherence at frequencies which become optically thick be-
fore they thermalize or are dominated by the continuum opacity.
In all these cases the behavior in the far wing will not cause any
convergence problem.

We can demonstrate the validity of these remarks by show-
ing the convergence in the far wing. If the wings were optically
thick at frequencies where the scattering is nearly coherent, the
values would remain near the original estimates. In fact as we
show in Fig. 11, this may not occur even if core optical depth
seems to be large. The example shown is appropriate for solar
prominences, with € = 107#, a Voigt profile with a = 10~* and
optical depth at line center 79 = 10°. As starting approxima-
tions we have used Sq(v) = Scrp, 0, 0.5, 1 X B. No matter what

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994A%26A...285..675A

FT993A8A - ~Z85C “675A

684

7=1000

=300y ! s s il

0 10 20 30 40
X

Fig. 12, Frequency—depth dependence of the PRD and CRD source
functions for 1D, 7 = 10 and € = 10™* case solved using the new
iterative technique

the initial value, the correct solution is obtained. The point is
that even for this large core optical depth, the wings at frequen-
cies where the scattering is nearly coherent are optically thin
(for z = 40, 7, ~ 0.01) and A-iteration is entirely adequate
to solve the scattering problem. Equally good convergence is
obtained nearer line core. Here there is substantial frequency
redistribution and the OAB approximate operator takes care of

“any convergence difficulties. On the other hand, if the line is, in
fact, optically thick at frequencies where the scattering is nearly
coherent, convergence difficulties will occur. For example, if
we had used 7o = 10® and the above parameters there are dif-
ficulties. To treat such extreme cases a more robust approach,
which we present in future work, is required.

In order to confirm our method for treating PRD effects, we
have made extensive comparisons with the results of P. Gout-
tebroze (1991, private communication) who used the discrete
ordinate method and finds results in complete agreement with
our own. In order to permit comparison with published results,
we show in Fig. 12 the 1D source functions for the cases of Ry
redistribution and complete redistribution for a finite slab of op-
tical thickness 7 = 10° and € = 10~*. The case presented here is
one treated by Hummer (1969; Fig. 3c). The PRD source func-
tions appear as curved full lines and, because of its frequency
independence, the CRD solution appears as horizontal lines. Al-
though our frequency grid spans 40 Doppler widths instead of
less than 21 as in Hummer’s study, we recover the same ma-
jor effects. The PRD source function at line center is roughly
equal to the CRD value throughout the slab. In greater detail,
however, the PRD solution at line center is smaller at the sur-
face than the CRD value +/€B; as also appears in Hummer’s
results. At line center, the PRD solution thermalizes “sooner”
than in CRD. This is because the thermalization length scales
as e~! for PRD—Ry; rather than as ae~2 for Voigt—CRD. In the
present case, these values are respectively 10* for PRD and 10°
for CRD. In the wings, completely unlike CRD, the PRD source
function, which is dominated by the incident radiation, is not
depth dependent.

L.H. Auer & F. Paletou: Two—dimensional radiative transfer with partial frequency redistribution. I
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Fig. 13. Contour diagram of log(Serp(z)/Scrp) at line center, for
two—dimensional transfer with e = 10~

7. Comparison of PRD and CRD effects in a sample 2D case

In this section, we apply the new iterative technique for the so-
lution of radiative transfer problems in two dimensions to an
example characteristic of a solar prominence and compare the
results obtained under the assumptions of partial and complete
redistribution. We assume an isothermal square slab with total
optical depth equal to 10° on both sides. The spatial grid has
55 points in each directions and the frequency grid spans 20
Doppler widths from line center. The Planck function B is set
to unity throughout the slab. For the line, we adopt a thermal-
ization parameter ¢ = 10~ a Voigt parameter a = 10> and
a continuum to line opacity ratio r = 10~". The slab is irradi-
ated on both sides and the bottom, by an incident profile with
I(z) = B =1 for | z |< 4 and O farther in the wings. This
roughly mimics the interaction between a solar prominence and
the Lyman o radiation incident from the chromosphere. The
PRD case is solved using Ry redistribution which applies when
there is coherent scattering in the atom’s frame (Hummer 1963).

In order to display the 2D-PRD effects, we have plotted
log (Sprp(z)/Scrp) at various frequencies from line core to
line wing in Figs. 13 to 15. Even at line center (Fig. 13), we
can see that PRD effects are non—negligible. At this frequency,
deviations from CRD are largest at slab center. In fact, the PRD
source function may be twice as large as the CRD one. This
PRD effect of enhancement of the source function at slab center
has already been noticed in 1D-PRD modeling of prominences
(Heinzel et al. 1987) and persists, in a modified form, in these 2D
calculations. (As a consequence, the excitation of hydrogen is
predicted higher in the central part of a prominence by PRD than
by CRD). The effect of quasi—coherent penetration of near wing
photons is larger in illuminated 2D slabs than 1D slabs, since
they have a greater area receiving incident radiation (Paletou et
al. 1993). Near the non—illuminated top boundary, we predict
small regions where the PRD solution is less than CRD (the
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Fig. 15. Contour diagram of log(Sprp(z)/Scrp), 20 Doppler widths
from line center

maximum deviation is smaller than 20%). For frequencies with
| z |< 4, deviations from the CRD solution are very small
near the illuminated boundaries (Sprp(z)/Scrp = 1), because
the incident radiation dominates the radiation for both CRD
and PRD in these layers. Further, when observing the slab “on
the limb” (i.e. along the horizontal axis), line center emergent
intensities for both kinds of frequency redistribution are aimost
identical (see Fig. 16). This is because the regions where the
PRD line center source function differs significantly from CRD
are too optically thick to affect the emergent intensity.

Farther in the line wing, Fig. 14 shows the same source
functions ratio at a characteristic frequency, 4 Doppler widths
from line center, where the Ry redistribution function begins to
show the quasi—coherent nature of wing photon scattering (i.e.
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the redistribution function shows a single peak, centered at the
absorption frequency). Needless to say, the mathematics valid
for this frequency regime is far different from that underlying
CRD and the discrepancies between the PRD and CRD solutions
are rather large. This is especially true in the uppermost layers
of the slab, along the vertical axis of symmetry. The PRD source
function can be a factor of 30 more than CRD. Indeed, at this
frequency we have both a preferential re—emission of photons at
the absorption frequency, instead of at line center as described by
CRD, and the external incident radiation is still non—zero. The
difference between PRD and CRD is particularly apparent when
one compares the emergent profiles for lines of sight hitting the
top layers of the slab, i.e. from above, as displayed in Fig. 16.
The CRD profiles are Gaussian while, in PRD, secondary peaks
are predicted with maxima 4 Doppler widths from line center.
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The log(Sprp(z)/Scrp) ratio, 20 Doppler widths from line
center is plotted in Fig. 15. There are major differences in the
calculated values of the source functions. The PRD source func-
tion is lower than the CRD one at all depths in the slab. The ratio
is on the order of 1072 over practically the entire slab, and the
smallest deviation is still larger than about 40%. We recover
here a well-known consequence of the PRD-Ry which pre-
dicts rapidly decreasing line wings while CRD predicts broad
and intense ones (cf. Milkey et al. 1979 and Fig. 16).

The predicted emergent profiles from the slab, observed on
the limb, for the two kinds of redistribution are shown in Fig.
16. The difference in variation with height is striking and cannot
be reproduced by 2D- or PRD-only models. It is caused by an
interaction of both of these effects. For the 2D-CRD case, the
finite thickness of the slab produces a double peaked emergent
profile, which disappears as losses through the upper boundary
reduce the source function. PRD aggravates both the size and
persistence of the self-reversal as well as suppressing the wings
at all heights. Comparing the two figures, we can see that, in
PRD, the central reversal of the line is predicted from the bottom
all the way into the central part of the slab. Further, the peak—to—
peak distance in the emergent profile is comparable to the width
of the incident profile (4 Doppler widths). This is unlike CRD,
for which the central reversal occurs only in the lowest layers of
the slab. Further as mentioned above, in the description of the
PRD effects on the source function, secondary emission peaks
in the PRD profiles clearly appear in the top layers of the slab
where the CRD ones are simply Gaussian.

The global height variations of the CRD emergent profile are
indeed as described by Vial (1982) in his study of the 2D Lyman
« profile emitted from prominences; however, from this exam-
ple we can see that there are important combined 2D and PRD
effects which should be treated simultaneously and consistently
in the modeling of this optically thick line in solar prominences.
The nature and the importance of the PRD effects is enhanced
for 2D slabs which may be dominated by incident radiation and
provide more escape opportunities than 1D.

8. Conclusions

The short characteristic approach provides a rapid and accurate
method for the computation of the radiation field in the pres-
ence of scattering in a two—dimensional medium. The approach
has been extended to include the effects of partial frequency
redistribution at a modest computational cost. While the PRD
approach is not valid for extremely large optical depths, it is
applicable to many important astrophysical problems. In fact,
convergence difficulties do not occur unless the optical depths
are much larger than 10 at line center in one of the finite co-
ordinates. Further, techniques which overcome this potential
difficulty are under development at the current time.

Our first application of the method is an extension of the
work of Vial (1982) to realistic simulations of resonance lines
like H1Lyman o, Mg 11 h and k, Ca 11 H and K in prominences.
For all these lines, both 2D and PRD effects may be expected
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