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Questions of Consistency and Convergence in the Solution of

Multilevel Transfer Problems

Fugene H. Avrett

Smithsonian Astrophysical Observatory and Harvard College Observatory
Cambridge, Massachusetts

ABSTRACT

In the solution of line transfer problems it is necessary to deal with
ratios of atomic populations. For a three-level problem with three radiative
transitions, we must calculate the ratios nZ/nl, n3/nl, and n3/n2 by means
of separate equations. Solutions obtained by certain iterative methods are
sometimes inconsistent, in the sense that (n3/nl)/(né/nl) # n3/n2. Similar
difficulties also arise in the solution of multiplet problems, where two or
more pairs of radiative transitions connect with two fine-structure levels ]
and i. The source functions determined for each pair of transitions must
not imply different values of nj/ni. We trace the difficulty to the calculation
of net radiative rates at small optical depths. Equations appropriate at
large optical depths are not always appropriate in the regioﬂ 7< 1. The
problems of consistency and convergence are not independent; inconsistencies
often occur in cases that have poor convergence properties. We describe a
general computational procedure, having good convergence properties, which

ensures that a consistent iterative solution is obtained.
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1. Introduction

In the spring of 1967, Rudolf Loeser and the author developed a general
computer program, called PANDORA, for the solution of multilevel line
transfer problems. It was found that solutions could be obtained without
difficulty in most of the cases that were attempted. In certain cases, how-
ever, the computed solutions exhibited a basic inconsistency. A year was
spent on further development before the difficulty was understood and cor-
rected. The purpose of this paper is to spare other investigators similar

delay.

Using PANDORA in its original form, we readily obtained solutions for
the atomic configurations shown in Figure 1; the broken lines represent
assumed collisional transitions, and the solid lines represent both radiative
and collisional transitions. These cases are characterized by the absence

of any complete circuit of radiative transitions.

~
~
-

(2) (b) (c) (d)

Figure 1

For the configurations shown in Figure 2, however, the program some-
times gave solutions that exhibited an inconsistency. In Case a the popula-
tion ratio of the two upper levels established by the two lower radiative tran-
sitiéns differed from the population ratio determined by the upper transition.
In the two other cases, b and'c, the population ratio n./ni established by
one pair of radiative transitions differed from the ratio established by the

other pair.
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(a) (b) (c)

Figure 2

Such inconsistencies are normally encountered during the initial stages
of an iterative solution, but the procedure we use has good convergence
prbperties in the sense that a stable solution is usually obtained after about
five iterations. We find that when an inconsistency arises the stable solu-
tion is not always independent of the starting solution. In some cases,

however, this stable solution is completely unaffected by further iteration.

Not only does the inconsistency arise when we deal with only certain
atomic configurations, but it is also sometimes removed when we choose
different values for certain atmospheric parameters. This point is illus-

trated later.

2. Outline and Conclusions

In Section 3 we derive the basic equations that relate a given line source
function to the net radiative rates for other line transitions. The source
function S.i depends on each net radiative bracket Py TR # ji, and eachp
can be determined from the values of S. The basic iterative procedure con-

sists of a successive evaluation of these functions.

In Section 4 we describe the usual type of iterative procedure, which
involves a standard te chnique for the evaluation of p. An alternative method
for the evaluation of p is discussed in Section 5. Our modified procedure is
described in Section 6. We remark on the use of single radiative rates and

total net rates in Sections 7 and 8.
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Numerical results are presented in Section 9. On the basis of these
results we conclude the following: 1) Except in certain circumstances, the
unmodified procedure described in Section 4 has good convergence properties
and leads to a consistent solution. 2) Difficulties with this procedure arise
in the case of a) depth variations in certain rate coefficients at small optical
depths, and b) strong coupling between similar radiative transitions. 3) The
modified procedure we describe in Section 6 leads to a consistent solution in

all cases, and has good convergence properties.

3. Equations for a Three-Level Atom

We can describe the basic features of our method of solution by using the
general three-level case as an example. The statistical equilibrium equa-

tions for levels 1, 2, and 3 are

0 (Plp+ Pig+ Pp)=n,P,) +n,Py +n P,

n (P Pa3 # Pyl =Pyt nPyp 40 Py,

n3(Py + Py + Py )=m Py +n,Po+n P, . (1)
We eliminate n, using the continuum equation

n (P * Pp ¥ Pr3) = Py + 0Py + 0Py (2)
which is the sum of equations (1), and obtain

’ = ? - 7
n (P, + &+ P+ 85 0, (Py) + U5+ ng(Py -+ 05
0y (P, + @, + Pya+ @23) =n) (P, +[')12) tng(Pg, + @32) ,

mg(Py) +8 5 + P, n (P4 +p13) tn,(Pyg £

2 T U35)=

(3)
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where

@ =
5= PuPu/ (P + Ppp + P

ij k3) ) (4)

Any two of the above three equations can be used to calculate nz/n1 and
n3/n1. The individual number densities can be obtained from these two

ratios as follows. The total number density

n=nl+r)2+n3+nk (5)

is presumed known. From this equation we write

n = , (6)
P2, %, %
| 0

and it follows from equation (2) that

o n3
n Plk*'ﬁ’l—PZk‘L'ﬁI%k
—_— . (7)
n) P ¥ Pro * Pps

The values of n, and n, can be found from ny, nz/nl, and n3/nl.

3

The bound-bound rate coefficients are given by

j>1i ‘ (8)
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The bound-bound radiative rates are expressed as net rates:

n(A.+0B.7..)-nB.T..=n.A.p.. s, j>i o,
J( )1 ﬁJl Jl) 1 3y )3 J leJl ) (9)

(10)

; (11)

Sji is the line source function, and pJ the net radiative bracket. The three

statistical equilibrium equations then become
m(Zyp % Z13) = mp(Bypp) + Zp)) H ng(Bygypay + Z5y)

0, (Ay 1Py + 2y +Z253) = mZ )+ ny(Ag 05, + Z3,)

n(A + A + Z

31P31 T %3 32P32 32) = MZy gt 72,0 (12)
where
z.=c. +&. . (13)
ij i

To deal with the 2-1 transition, we write the second- and third-level

equations as

n n

5, (A21"21 tZ,t 2,5 - n, (A32 32 T 23)=2),

2, +f§(A P+ Z. +A._p.+Z.)=Z (14)
n, “23 7 m 31P31 T 231 T AP T 25 13 -
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We solve this pair of equations for 112/n1 and substitute the result on the

right-hand-side of the expression

2hv3. /2
S, = 2l (15)
21 52 nl :
1o
1

)
Then

s late,al P
21 Ttey 51 -B1% 21

)Ba1

, (16)

where B21 is the Planck function, (321 = exp(-thI/kT), and where

A U IS (A31P31 + 231023 (17)
L2l 8y | 21 Agpegy t 25 HAgnepn t 2y,

and
S WS O B i v S v (18)
2,21 ByByy Ay |12 AgyPyy t 23y T Agpeay t 2y,

For the 3-1 transition we follow the same procedure starting with the third-

and second-level equations. Then

_ J31“2,31“"‘331)]331
5315 T+ e 2, P ; (19)
1,31 ~ P31%2, 31
where
_ 1 (Agop3p + Z35) (A0, + 2,))
€ 31° A %31 7 , (20)
, 3] : 7.+ A + Z

23 21P21 21
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and

% Z_.7Z
1 lz+ 23712

€ = . (21)
2,31 0Bay Ag | T30 2,54 Ay ey + 2y

For the 3-2 transition the third and first level equations are used to obtain

T o +e (1-pB,,)B
_ U327 52,32 32732 (22)

320 1He 55 - P332
where
ol |, BarPs t 2502, (23)
1,32 Ay 32 Zl3+ZIZ ]
and
S TS U S ¥\ P Lo S UL (24)
2,32 53(332 Aj, 23 Z 3t le
We now have three equations of the form
T+ B
S=Tve - (22)
where
e=¢ -Be, , (26)
and
~ 52(1 - B)
B =--——:—B—€—— B . (27)
‘1 7F%2
Alternatively, we can write.equation (25) as
1 — ~
S--(J-8)=B . (28)
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The equation of radiative transfer establishes the dependence of the
radiation field at any one point in the atmospherec on the values of S at other
points. From the transfer equation (ignoring continuous absorption and

emission) we can determine the coefficients Wij such that

J.-8S. = w..S. , (29)
=1

where N is the total number of chosen depth points. Equations (28) and (29)

lead to the simultaneous equations

N
s.-iE w.s. =8, , i=1,2, ---, N, (30)
i e, ij7j i
i 4
=1
from which we can determine Si given € and gi’ i=1,2, ---, N. The method

we use to determine the coefficients Wij is similar to that develbped by Athay

and Skumanich (1967).

Once S is known, it follows from equations (10) and (25) that

It also follows from equations (10) and (25) that
«(B-T
- (32)

We could obtain J by an integration over the above values of S, but this

procedure is basically equivalent to the use of equation (29), i.e.

J.=8S.+ E W.S. . (33)
i i ij ]
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If the same coefficients Wi' are used to obtain S and to obtain J from S,

equations (31) and (32) give identical results.

4, The Unmodified Iterative Procedure

In the three-level case we begin with assumed values of Prrs P31» and
P3, 2t each depth; usually we set them all equal to zero. Then for each
transition, ¢ and B are calculated according to equations (26) and (27). Note

that for each transition ji, pji does not enter the calculation of ¢ and B.

Given e and '}\3” each set of simultaneous equations (30) is used to calculate
5210 S3p» and Sz,
equation (31) to determine improved values for Prys P31s and P3p This

~
From the values of S, ¢, and B in each case, we use

procedure is repeated until a stable solution is obtained. Often we find
that after five or ten such iterations the successive values of S are identical

to an accuracy of six or more significant figures.

Whenever there is a complete circuit of radiative transitions, as in
Figure 2, it is possible to ask whether the solution is self-consistent. From

equation (11) it follows that

n & \s. Tl (34)
J J J1
where
_ 3,2
o= Zhvji/c ) (35)

In order to satisfy the condition

w

n. n
2 _3_
o =1 (36)

2|

2
n

w

1
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in the three-level case, we must have

‘ -1
a a a
£+ 1 832+1)<-S-§l+1) =1 . (37)
21 32 31

This question of consistency does not present itself in the cases shown

in Figure 1. In case (a), for example, there is no need for an independent

determination of S32. When A32 = 0, the term A:’)Zp32

tions for the 2-1 and 3-1 transitions, and we iterate using only the functions

Pa1s P31s Spp» and Sy

mined, but equation (37) is automatically satisfied when a stable solution is

drops out of our equa-
There are several ways in which S32 can be deter-
obtained.

In the general three-level problem, however, equation (37) is not
necessarily satisfied, evén after the values of S are not affected by further

iteration. The difficulty lies in the use of equation (31) to compute pji at

small optical depths.

5. An Alternative Calculation of p..
ES

In optically thick regions of the atmosphere it is necessary to deal with
the radiative rates as net rates, since pairs of single radiative rates tend to
cancel one another. Formulations that disregard such cancellation do not

converge properly.

In optically thin regions the use of net radiative rates can lead to diffi-
culties. For example, if all the bound-free rates and bound-bound collision
rates could be neglecfed compared with the net bound-bound radiative rates,

equations (14) would reduce to the indeterminate form

n

% 3
5}""21"21 ‘5?"*32"32 =0,
n3
0+ ?{I‘(A31"31 tAgps)=0 . (38)
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On the other hand, when equations (14) are written in terms of single rates,

we have

J o, T
L 21 3 Y32
oA\t R U

SA, B T+ Z, . (39)
1 731
Now, even when each Zij is equal to zero, we can solve these equations for

nz/nl and n3/n1, glvenJZI, J3l’ and J32.

The basic relétionship between J and S is given by equation (25), from

which it follows that

T=S(+e)-¢B . (40)

Each time we obtain values of S from the simultaneous equations (30), the
corresponding T can be obtained from equation (40). We can also determine
J by an integration over S, but equation (40) normally gives the same result.

Given JZl’ J3l’ and J32, we can compute nZ/nl and n3/n1 from '

equations (39), and n:,’/n2 according to
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.n n
ey
2 1 1
The values of SZI’ S31, and S32 are then obtained by equation (11). These

three source functions satisfy equation (37) identically. From these corres-
ponding values of J and S, we can determine Ppys P3yo and p32 by the

defining equation

(42)

Rel
1}
—
]
0l

There is a basic difference between this method of determining p and the

direct method using

B
p=e<§--l> . (43)

In optically thick regions where p < 1, equation (42) gives almost mean-
ingless results, except in the final iterations whenJ and S are nearly equal to
their final consistent values. Equation (43) is far more appropriate, since

we usually have either e < lor S = B.
In optically thin regions, p is not necessarily small compared with unity,
and it is sometimes more appropriate to use equation (42) rather than equa-

tion (43) for the determination of p.

6. The Modified Iterative Procedure

As shown in Section 9, it is necessary to use the modified procedure in
one of two alternative forms: A) In the surface region of the atmosphere
where every Tji is less than T, equation (42) is used to determine p. Other-
wise, we use equation (43). B) We consider each transition separately and
determine p by equation (42) when Tji <7* and by equation (43) when

als
T..> T .
ji
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At depth values near T = T we use a weighted average of the two expres-
sions for p. We have found that the most suitable value for T is approxi-
mately 5. Sometimes the iterative corrections based on equation (42) are
excessive, in which case we limit the magnitude of these corrections. Note

that S in equation (42) and S in equation (43) are obtained in different ways.

The stable solution obtained in this manner is always consistent in that
equation (37) is satisfied. When a stable solution is obtained, there is com-
plete agreement between equations (42) and (43) at all depths. In some cases,
as shown in Section 9, the use of equation (42) is unnecessary, and equation (43)
can be used for the calculation of p at all depths.

In the three-level case, we often have 7,, < 1 in an extended region of

. 32
the atmosphere where both Ty P 1 and T3 P 1, so that S32 in the expression
1 - (J32 /832) could be determined from le and S:,’1 by the use of equation

(37). It is difficult, however, to generalize this simpler approach for cases
with more than three levels. Furthermore, it is inapplicable in regions that

are optically thin in all transitions.

7. On the Use of Single Radiative Rates

Since the cause of our difficulties (when they arise) apparently lies in
the calculation of p, we should consider the determination of 3| and < in
terms of single rates. If we retain the separate absorption and emission

rates for the 3-2 transition, equations (14) have the form

) ( ®y —532 )
— |A_.p,, +Z_ .+ A —L£ + Z
n 21721 21 32&; as, 23
n ’ T
3 32
+—=21A <1 + —-—-> + Z = Z ,
n1 32 a32 32 12
"2 (s ®3 I3,
“a\P32 6 ot %423
1 2 732
) 732
+';1—l— A31p31+Z3I+A32 1+——-u32 +Z32 =Zl3 . (44)
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Equations (17) and (18) would then become

s
(Agpgy ¥ z31)< 'co" a, + Zy3
+ A

T _ 1
‘1,217 &, Zoy * 332 (45)
Ag Py T 25 F AL LY T— )12,
a3
a:nd
'J-_ \
32
® Zis| B\l Yo |t 23, (
g _ 1 1 7 4 : 32 \
2,21 ®,B,; A, ) 12 T3,
AgiPay t 23 F AL [+ 23,
- 32 .
(46)

In the set of simultaneous equations (30) for S e and E would be determined

21’
T T

from 1,21 and 2,21 rather than from €1,21 and €, 21° In t}tle gbove equa-
tions, only the 3-2 rates have been treated as single rates. We could also

treat the 3-1 rates in the same manner.

Cuny (1968) reports that such a formulation can be used successfully:
given two strongly coupled transitions, the € terms for one transition can be
written in terms of net rates and those for the other in terms of single rates.
A disadvantage of such an approach is its lack of generality. The same
criticism applies to a similar method used by the author in an earlier paper
(Avrett, 1966).

8. On the Use of Totai Net Rates

The manner in which € and €, are determined has been described briefly
in Section 2. The procedure we use contains an additional provision, which

is explained here.
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The net radiative rate for the transition ji is given by

n(A,. +B.7)-nB.TF. =na.p. . (47)
S S A Rt ¥ I A

The total net rate including collision terms is

- .
mJ.(AJ.i + ‘Bjiin + cji) ni(j}ij;rji + cij)

b.
- 2
= nj Ajipji + Cji < - b.) . (48)

Here
b (n) /(A
b. = n. b3 ’ (49)
i i n, )
1 - .
n.*
c..=C.. |4 , (50)
1) Ji -
n,
i
and
n* &, -hv_ /kT
_J__ - ——l e Jl . (51)
* Q.
n, i
i
Equations (20) and (21) for € 3] and €, 31 were determined from the
statistical equilibrium equations
o3 "2
n o (Agpg) + tAgP3pt 23,) - n, %237 213 (52)
n, 3 n,
" a BaaPap t 23) F o (A21P21 T2t 23052 - (53)
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Equation (53) can be rewritten as

n n

3 2 _
N (Agopgp t Z3)) + n, Zy3% X1 (54)
where
) . |
X127 T3] (AyyPoy T 25 - }?2"212) , (55)
or
) b : ny
X12 = -5, [P21P21 * G2l ', +J.)21'?1; M2 (56)

In this equation the term in brackets (multiplied by nz) is the total 2-1 net
rate, including transitions via the continuum. In the case of a two-level

atom with a continuum, ¥ 12 = 0.

If equation (54) is used in the place of equation (53), € 31 and €& 31
become
Z
e (57)
3 31 .
and
bl 1
€ = — (Z. .+ x,,) (58)
2,31 é3631 A?’1 13 12

These expressions are more appropriate than the original ones when ¥ 12 is
small — which is the case when the 2-1 transition is largely unaffected by
level 3. It can be verified that these expressions follow directly from the

equation for level 1, i. e., from the first of equations (12).
There are cases in which it is necessary to introduce such total net

rates. However, this additional complication is not essential in the cases

discussed in the following section.
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9. Numerical Applications

A. A Three-Level Hydrogen Case

We now consider a simplified threce-level case in which the frequencies
and statistical weights correspond to the three lowest levels of atomic hydro-
gen, For simplicity, all bound-free transitions are ignored. Each Zij is
then equal to Cij rather than to Cij + @ij' We assume that each Cij is constant
with depth, and that the temperature is constant. The absorption profiles
are Gaussian with Doppler widths determined by the temperature. We choose
a plane-parallel semi-infinite atmosphere, assume completely non-coherent

scattering, and ignore continuous absorption and emission in every transfer

equation.
. ’ 15 _ 15
The input values we select are: Vol T 2.47X 10 s V3 = 2.93 X 10" 7,
- - - - 8 - ‘ 7
wl—Z,w2—8,w3—18,A21—4.68X10,A31-—5.54X10,

_ 7 _ _ _ 5 _ o
A32— 4,39 X 107, C21 = C31 = C32— 107, and T =5,000°. These data are

sufficient to allow us to determine SZI’ S3l’ and 532 as functions of the

optical depths TZI, 1'31, and 732.

The unmodified procedure described in Section 4 and the modified proce-
dure described in Section 6 were both used to solve this problem. Both meth-
ods produced the same solution, which is given in Table 1. Rapid convergence
was found in each case. After ten iterations the solution changes by less than

one part in 106. The three source functions are consistent with each other

| -1
a a a
¢ = §31-+.9 <§§§-+.9 (§21.+1) (59)
21 32 31 |

is equal to unity; in the tenth iteration we find that |§ - ll never exceeds

when

10—5 at any depth. At optical depths less than unity we find that the corres-

ponding values of
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Table 1

Solution for the three-level hydrogen problem (Case A)

21 $,17B2) 31 531/B3) 32 S32/B3;
0 0. 0115 0 0.00266 0 0.228
1. 0(-3) 0. 0116 . 60(-4) 0. 00266 .89(-14) 0.228
1.0(-2) 0. 0117 . 60(-3) 0.00267 . 91(-13) 0.226
. 0(-1) 0. 0127 .60(-2). | 0.00272 . 00(-12) 0.212
1 0.0193 . 60(-1) 0.00308 .59(-11) 0.159
1.0(1) 0. 0562 . 60 0.00517 . 05(-10) 0.0913
1. 0(2) 0.210 . 60(1) 0.0142 .16(-9) 0. 0666
1. 0(3) 0. 634 . 60(2) 0. 0385 L12(-7) 0. 0600
1. 0(4) 0. 979 . 60(3) 0. 0581 . 38(-5) 0. 0589
1. 0(5) 1. 023 . 60(4) 0. 0606 . 64(-4) 0. 0588
1. 0(6) 1. 027 . 60(5) 0.0611 .68(-3) 0. 0589
1. 0(7) 1. 027 . 60(6) 0. 0621 . 69(-2) 0. 0601
1. 0(8) 1. 027 . 60(7) 0. 0703 L 69(-1) 0.0677 .
1. 0(9) 1. 025 . 60(8) 0.120 .68 0.116
1. 0(10) 1.019 .60(9) 0. 354 .67(1) 0. 345
1.0(11) 1. 008 . 60(10) 0.816 .65(2) 0.810
1.0(12) 1. 000 . 60(11) 0.985 .63(3) 0.985
1.0(13) 1. 000 . 60(12) 0.999 .63(4) 0.999
1. 0(14) 1. 000 .60(13) 1.000 .63(5) 1. 000

2

B,, = 1.12(-11)

B, =2.26(-13)

31

B,, = 1.76(-5)

32
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7.
S .
Pgi) =1-g- (60)
J1
and
B
(L) _ ji
pji = eji<sji - 1> (61)

are the same to within one part in 105. The ratios bj/bi are calculated in

two ways: 1) from Sji according to

b, o “hw /KT -1 »
5" <§J:+ e , (62)
i ji
and 2) from
b (M) /(7 '
b, <n> ol (63)
1 1 ni

where nj/ni is determined from the set of equations (39). These equations

depend on the values Of—jZI’ J31, and 332. In the tenth iteration the corres-
ponding values of bj/bi agree to an accuracy of a few parts in 106. These

tests indicate that the solution given in Table 1 is a fully self-consistent one.

The iterative behavior of the solution by use of the unmodified procedure
is indicated in Table 2. A solution accurate to better than one percent is
obtained in five iterations. The iterative behavior of the modified procedure
is similar. We conclude that in this case the unmodified procedure has good

convergence properties, and leads to a self-consistent solution.
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Table 2

Iterative behavior of Sji and £ at 7= 0 for Case A

Iteration
rnugber Shﬂ/S(IO) shﬂ/s(lo) 0ﬂ/s(1o ¢
1 0.983 19.5 0.257 0.0130
2 0. 998 2.87 1.02 0.355
3 0. 9994 0.992 0. 892 0.900
4 ~0.99998 1.04 0. 996 0.959
5 0.99993 0.9998 1. 003 1.003
6 10.999998 1.002 0. 9991 0.998
7 0. 999999 1.00003 1.002 - 1.002
8 1. 000000 0.99997 0.9998 0.99990
9 1. 000000 1. 00002 1. 0003 1.0003
10 1 1 1 1.000002

B. The Three-Level Case with Variations in Cji

In the preceding case the collisional de-excitation rates were constant

throughout the atmosphere: C,. = C,. = C__ = 105 The case we now con-
21 31 32 3

sider is the same except that each Cji varies from 105 at 7, = 1000to 10

at T, = 0. The exact values we use are given in Table 3.

In this case the unmodified procedure has poor convergence properties.
The results we obtain using this procedure are given in Table 4. The first
column of Table 4 should be compared with the last column of Table 2.

When the collision rates are constant, the unmodified method is rapidly con-
vergent. When the collision rates vary with depth, the unmodified method is

slowly convergent near the surface.
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Table 3

Depth variation of the collisional de-excitation rates in Case B

51 Cji(j > i)
0 1. 0(3)
1(-3) 1. 2(3)
3(-3) 1.6(3)
1(-2) 2.5(3)
3(-2) 4. 0(3)
1(-1) 6. 3(3)
3(-3) 1. 0(4)
1 1.6(4)
3 2.5(4)
1(1) 4. 0(4)
3(1) 6. 3(4)
1(2) 8. 5(4)
3(2) 9. 0(4)
1(3) 1. 0(5)
T > 1(3) Cji= 1(5)

In these examples all boﬁnd-free transitioﬁs have been ignored. If the
bound-free rates 1) are relatively constant with depth and 2) are much larger
than the bound-bound collision rates, then each Zij is relatively constant,
and the unmodified method has good convergence properties. In the standard
hydrogen problem discussed by Athay et al. (1968) in these Proceedings,
the bound-free rates predominate and are nearly constant Witin dépth near the
surface. This feature may explain why no convergence difficulties were

encountered with the standard problem.

The last two rows in Table 4 show the results of two further iterations by
use of the modified procedure, Alternative A, described in Section 6. We
have solved this same case by the modified procedure starting with all pji = 0.

The same final solution is obtained in about six iterations.
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Table 4

Iterative behavior of € in Case B at various depths

Iteration 3 .

WP arface | T21= 01 | =1 [ 7y =10 [ 7y = 100
1 0.013 0.014 0.018 0. 032 0. 040
2 0.117 0.148 0.219 0. 346 0.468
3 0.311 0.418 0.617 0.907 0.994
4 0.299 0. 443 0.657 0. 881 0.968
5 1 0.336 0.519 0. 757 0. 965 0.999
6 0. 341 0. 565 0.805 0. 965 0.998
7 0. 358 0. 609 0.850 0. 986 1.000
8 0. 366 0. 654 0.885 0.988 1.000
9 0.377 0.687 0.909 0. 995 1.000
10 0. 386 0. 725 0.931 0. 996 1.000
11% 1.008 1.008 1.006 1.001 1.000
12 ©1.000 1. 000 1.000 1,000 1.000

“Continuation by use of the modified procedure

We conclude from this example that the unmodified procedure sometimes
has poor convergence properties, and that the modified procedure is an

acceptable alternative.
C. A Two-Line Problem with a Common Lower Level

We now consider a three-level case in which A, = 0. Moreover,

32~
=200, A, =100, C21 = c31 =1, C,, =1000, bl =, = b3 = 1, and

421 31 _ 32
T = 100, 000°; otherwise the input values are the same as for Case A. A
solution of this problem is given by Kalkofen (1968) using a method in which

the two lines are treated simultaneously. If stimulated emissions could be
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neglected, this simultaneous method leads to an immediate solution without
iteration. Stimulated emissions are important in this 100, 000° case, and
Kalkofen presents an iterative perturbation method having the property of

very rapid convergence.

The discussion in this section has two purposes: 1) to add support to
Kalkofen's conclusion that ""standard' iterative methods for solving this type
of problem are slowly convergent, and 2) to show, on the other hand, that
our modified iterative method for solving this problem has acceptable con-

vergence properties.

In Table 5 we give the iterative properties of the unmodified or standard
procedure as applied to the above case. After five iterations the solution is
in error by about ten percent. After ten iterations the error is about three

percent.

Table 5

Iterative behavior of S2 » S31 and g€ at T = 0 for Case C by use of
the unmodified procedure

Iteration
nunrrxlber S(Zr;) /Sgeixact) 5(31;) /Sgelxact) :
1 1.231 -~ 1.875 0. 646
2 0. 776 1.163 0. 655
3 0. 897 1.223 0. 725
4 0.884 1. 122 0. 780
5 0.928 1.110 0.828
6 0.933 1. 074 0. 864
7 0. 954 1. 062 0. 894
8 0. 960 1. 045 0.916
9 0.972 1. 037 0. 935
10 0.975 1. 029 0.948
glexact) _ o o551 slexact) o o gg755
®21 31 :
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When we apply the modified procedure to this case, the solution near
the surface oscillates with a slowly decreasing amplitude. We damp such
oscillations as follows: in iteration n we replace Py by (1 -W )p_+ W op
The iterative behavior of the solutions with Wp = 0.2 and Wp = 0. 3 is shown
in Tables 6 and 7, respectively. In the first case the solution oscillates
with a rapidly decreasing amplitude. In the second case the solution is in
error by less than one percent after five iterations and by less 0.1 percent
after seven iterations. The solution is given as a function of depth (in terms
Cof b ratios) in Table 8.

Table 6

Iterative behavior of S21, S31 and § at T = 0 for Case C by use of
the modified procedure with Wp = 0.2

Iteration
number (n) ,(10) (n) ,~(10)
n 5217521 S31 /531 £
1 1.232 1,874 0. 646
2 1.004 1.106 0.904
"3 1,053 1.015 1.036
4 0.982 1.014 0.967
5 1.015 0. 998 1.015
6 -0.994 1. 003 0.990
7 1.006 0. 999 1. 006
8 0.998 1. 001 0.996
"9 1.003 0. 999 1.002
10 1 1 0.999
(10) _ (10) _
S21 = 0, 005501 S31 = 0.007552
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Table 7

Iterative behavior of S, 4, S3) and § at T = 0 for Case C by use of

the modified procedure with Wp =0.3

Iteration

number (n) ,o(10) (n) ,(10)
n S;1 /55, S31 /83 ¢
1 1.231 1.875 0. 646
2 1.021 1.172 0. 867
3 1.044 1.040 1.003
4 1.001 1.019 0.982
5 1.005 1.005 1.000
6 1.000 1.003 0. 997
7 1.001 1.001 1.000
8 1.000 1. 000 1.000
9 1.000 1.000 1. 000
10 1 1 1. 000

(10) _ (10) _
S, = 0.005507 Sy, = 0. 007550
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Table 8

Solution for Case C

To1 b, /b, by /b,
0 0. 079 0. 081
1(-2) 0. 080 0. 082
3(-2) 0. 082 0. 084
1(-1) 0. 086 0. 088
3(-1) 0. 095 0. 096
1 0.118 0.119
3 0.166 0. 166
1(1) 0.272 0.272
3(1) 0. 435 0.435
1(2) 0.681 0. 681
3(2) 0.873 0.873
1(3) 0. 969 0. 969
3(3) 0. 992 0. 992
1(4) 0.998 0.998
3(4) 0. 999 0.999
1(5) 1. 000 1. 000
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D. A Two-Line Problem with a Common Upper Level

To illustrate the generality of the method described here, we now invert
21 =1%’ A3y =100, A, =200,

C31 = C32 =1, C21 = 1000, and Vo = 0.46 X 10" 7; otherwise the input values

are the same as in Case C. The two radiative transitions now have a common

the atomic configuration of Case C. Then A

upper level.

This case and the preceding one have similar properties. The iterative
behavior with WP = 0.3 is shown in Table 9. The solution is given in Table
10. A comparison of Tables 8 and 10 shows that the two lines are more

strongly coupléd together in the case of a common upper level.

~ Table 9

Iterative behavior of Sj,, S32 and £ at T = 0 for Case D by use of
the modified procedure with Wp =0.3

Iteration
number (n) ,.(10) (n) ,(10)
n S3 /831 S32 /S32 £
1 1.213 1. 845 1.492
2 1.195 0. 999 0. 839
3 0.995 1. 081 1. 086
4 1.022 0. 995 0.972
5 0. 997 1.012 1.014
6 1.002 0. 998 0. 995
7 0.999 1. 001 1. 002
8 1.000 1. 000 0.999
9 1. 000 1. 000 1. 000
10 1 1 1. 000
(10) _ (10) _
S31 = 0. 00760 S32 = 0. 00571
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Table 10

Solution for Case D

Ty b:,’/b1 b3/b2
0 0. 08202 0. 08204
1(-2) 0. 083 0. 083
3(-2) 0. 085 0. 085
1(-1) 0. 090 0. 090
3(-1) 0.100 0.100
1 0.129 0.129
3 0.190 0.190
1(1) 0.323 0.323
3(1) 0.517 0.517
1(2) 0. 763 0.763
3(2) 0.916 0.916
1(3) 0.979 0.979
3(3) 0. 994 0.994
1(4). 0. 998 0.998
3(4) 1,000 1.000
1(5) 1. 000 1.000

E. A Four-Level Sodium Case

The first four-level case we attempted is the one indicated in Figure 3,
consisting of the sodium D1 and 'D2 lines together with the 8183 A and 8195 A
subordinate lines. This problem turns out to be an exceptionally difficult
one. In the course of a lengthy investigation we tried many different methods
without success. The only method we have found to work is the one described
in Section 6, using Alternative B. We now define a particular problem and

give its solution.
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Figure 3

We use the input values v,, = 0.509 X 1015, Vi = 0.510 X 1015,

= 0.875% 1012, 5. =2, B, =2,0,=4, b, =4, A, =6.05X 10
1 7 1 2 7 3 4 271 ’ 4
6,05 ><419 s By =54.17>< 106, Ayz= 8.3¢4Xx 107, C,, = C3y = Cyy =107,
C42 5X 107, 3 = 107, and T = 5000°. The same simplifica-

c,,=10", C
tions imposed in the previous section are imposed here. The solution we

Va
Asl

1

43

obtain is a fully consistent one and is given in Table 11.

Here the collision rates are constant with depth, and it is possible to
obtain this solution if we use the unmodified method. However, about 40
iterations are required. When the collision rates vary with depth, the

unmodified method does not yield a consistent solution.

In Table 12 we show the initial iterative behavior of the solution when we
decrease the values of Cji’ j > 1i, by the factor 10 in the region 0 = T3] =1.
The quantity £’ is given by

1

a a a -
£/ = S—3Z‘+l>(—si3_+l>'_sﬁ+l> , , (64)
| 32 43 42 |

in analogy with equation (59). is obtained from the full set of statistical

(832
equilibrium equations.) Both & and £’ are equal to unity when the computed

population ratios are consistent with each other.
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Table 12

Iterative behavior of § and §’ at various depths in Case E
by use of the unmodified procedure

Tteration £

number — _ — —
n Surface  T31° %03 73, =08 Ty =5 74 =
1 1.41 1.39 1.20 1. 01 0.95
2 1.58 1.55 1.35 1.12 1. 01
3 1.22 1.22 1.15 1.05 0.99
4 1.14 1.14 1.11 1. 05 1. 00
5 1.08 1. 08 1. 07 1.03 1. 00
6 1.04 1. 04 1.04 1.03 1. 00

Iteration ‘ g’

number _ _ _ _
n Surface T3 = 0.03 T3, = 0.8 T3] T T3] *
1 1.29 1.30 1.32 1.37 1.62
2 0. 98 1.03 1.08 1. 01 0. 95
3 0.67 0. 71 0. 80 0. 82 0. 83
4 0. 64 0. 70 0. 82 0. 86 0. 85
5 0.60 0.67 0. 80 0. 84 0. 83
6 0.59 0. 66 0. 80 0. 85 0. 84

In Table 12 the values of £’ near the surface tend to converge upon
values that differ from unity. Subsequent iterations are of little help.
However, the modified procedure yields a solution with § = §/ =1 at all

depths.
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F. A Five-Level Calcium Case

Finally, we consider the five-level Call configuration shown in Figure 4.

15 15

We use the following input values: Vo) = 0.410X 10 7, V3 = 0.412 X 10" 7,

7 = 0. 756 X 1015, ve, = 0. 763 X 1015, B =2, 0,=4,8,=6, 8 =2,

w. =4, A.. =1.4x 105, A =l.4><108,A = 7.2% 10°, A =8.1x 10°
5° % %517 41" 7, 537 ', 52~ % ;
A _=7.8%x10,C.,=5,1%x10,C,, =5.1x10", C_,=1.4X10

42 4 51 g’ 4l ;53 3
C..,=1.6x10°,C,,=1.6x10>, C,. =8.2x 10, C,.=8.2X 10>,

’52 o 42 2" 31 30 2l

Cgy=4.8X10°, Cpp=1.0X 10, G,y=1.0X 107, and T = 5000°. These

collision rates have been obtained from the data compiled by Linsky (1968)

1 1). The consistent

(and correspond to an electron density of roughly 10
solution we obtain is given in Table 13. This case is not quite as severe as

the four-level sodium case, but has the same basic characteristics.

Figure 4

10. Final Remarks

The conclusions reached in the previous section are summarized at the
end of Section 2. Our method of solution is outlined in Sections 3 through 6.
A more complete discussion is given by Avrett and Loeser (1968a, b, c) in
papers dealing with a) the determination of J from S by means of the equation
of radiative transfer [cf. eq. (29)], b) general methods for handling the
equations of statistical equilibrium and the coupling between different tran-

sitions, and c) a description of our general computer program PANDORA,

© NCAR ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1968rla..conf...27A

62

(s-)ez°2 = 5g (s-)e2z = ©°g (s-)62°2 = g (9-)2s v = °g (9-)6v 'y = Ta
000 "1 (#)L8 "1 000 "1 (e)tr-e 000 "1 (¥)80 ' 1 0001 (9)16 1 000 "1 (s)¥8 "6
€66 °0 (€)88 "1 €66 °0 (2)2r 2 €66 °0 (€)80 "1 966 °0 (s)16 1 966 0 (¥)¥8 6
LE6 'O ()16 "1 LE6 0 (91 -z LE6 "0 ()or "1 €%6 0 (¥)16 °1 €¥6 "0 (€)e86
€L5°0 (D61 €LS°0 222 1L5°0 (Der-1 109°0 (€)16 "1 109°0 (2)28 '6
¥¥2°0 €8 °1 142420 (1-)20 "2 6£2°0 90 "1 192°0 (2)€6 1 952°0 (1)16 6
9€T1°0 (1-)8z°1 9€1°0 (2-)p¥ "1 2€1°0 (2-)ge "L 011°0 (1)86 "1 LOT 0. (1)eo "1
€580 0 (€-)s8 '8 €580 "0 (¥-)L6°6 6€80 ‘0 (e-)ot"s 12%0 °0 202 ST¥0°0 ¥0 °1
8650 "0 (¥-)68 "L 8650 ‘0 (s-)o6 '8 2,90 °0 (¥-)ss ¥ €%20°0 (1-)¢0 2 ¥L20 "0 (1-)%0 "1
¥¥S0 "0 (s-)eL-L ¥$S50 ‘0 (9-)2L '8 0%¥90 "0 (s-)sv v 2120 °0 (2-)eo0 ' 16520°0 | (27)¥0 1
S€S0°0 (9-)1L "L G€50 0 (L-)69 '8 9€90 0 (9=)¥% "% 8020 ‘0 (€-)€o ' 8%20 0 (€=)%0 "1
¥£50 0 0 ¥€S0 0 0 S€90 "0 0 L020°0 0 L¥20 0 0
€5q/€Sg €5, 25q /g s, Wy g Al 15q,15g 15, g, lrg %,

LGS U0D [ B 1 1BAAT,

UOIIN[OS WMID[eD [9AI[~9ATJ

€1 °219®&8L

© NCAR ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1968rla..conf...27A

63

together with applications to '"'realistic' atmospheres. In addition, we give

a more complete list of references to other work.

I am indebted to Yvette Cuny and Wolfgang Kalkofen for a number of
critical discussions, and to Rudolf Loeser for his assistance and collabora-

tion in all of the research reported here.
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