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Abstract. We have developed and extensively tested a new mul-
tilevel NLTE transfer code for isolated solar atmospheric struc-
tures (loops, prominences, spicules etc.). The code is based on
the MALI approach of Rybicki & Hummer (1991, 1992) to mul-
tilevel accelerated lambda iterations. It is demonstrated that this
method is fully capable of treating a difficult problem of NLTE
hydrogen excitation and ionization equilibrium, provided that
we linearize the preconditioned statistical equilibrium equations
with respect to atomic level populations and the electron den-
sity. With this generalization of the original MALI approach,
the numerical code is robust and stable. As compared to the
standard linearization method of Auer & Mihalas (1969), the
new MALI code designed for 1D slabs is more than one or-
der of magnitude faster and its accuracy is quite satisfactory.
We discuss several details of our implementation of the MALI
technique to isolated, externally irradiated, 1D structures and
finally draw some future prospects.
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1. Introduction

Spectral diagnostics of isolated structures in the solar atmo-
sphere becomes more and more important for several reasons.
First, such structures like prominences, loops, spicules etc. rep-
resent the objects in the solar atmosphere which are now the
subject of intense studies of many researchers (see papers in
RuZdjak & Tandberg-Hanssen 1990 and RuSin et al. 1994). Sec-
ond, some of these finite structures can be regarded as basic con-
stituents of solar and stellar atmospheres (e.g. spicules, fibrils,
quiet-atmosphere loops) and thus the detailed understanding of
their physical behaviour plays a crucial role in the modelling
of inhomogeneous atmospheres as whole (Fontenla et al. 1988;
Heinzel 1991; Heinzel & Schmieder 1994). Finally, let us also
mention that new large instruments are almost ready to start ob-
servations (SOHO, THEMIS) and they will provide us with a
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great wealth of high-quality spectroscopic data. Therefore, new
efficient tools for spectral diagnostics and NLTE modelling are
highly desirable.

In the present paper we test numerically the multilevel Ac-
celerated Lambda Iteration (ALI) technique for the case of such
isolated structures and demonstrate its ability and usefulness
for practical use. For quiescent solar prominences (no veloc-
ity fields), a two-level ALI was already successfully applied by
Paletou et al. (1993) and Auer & Paletou (1994). These authors
undertook the difficult task to implement ALI to structures hav-
ing 2D-slab geometry and they also accounted for the partial
frequency redistribution (PRD) in resonance lines. For hydro-
gen La line they confirmed its PRD-behaviour already studied
for 1D slabs by Heinzel et al. (1987) and they recognized some
new 2D effects. However, this work has been confined entirely
to a schematic case of a two-level atom without continuum.
On the other hand, Heinzel et al. (1987) (further referred to as
HGYV) and Gouttebroze et al. (1993) (referred to as GHV) have
performed an extensive NLTE modelling of prominences and
prominence-like structures, assuming 1D slab geometry, PRD
and multilevel hydrogen atom model with continuum (up to 30
levels). Their results are important not only for resonance Lyman
lines (La, Lg,...), but also for such important line as Ha which
is most frequently used line for prominence studies. Heinzel’s
code is based on the linearization method of Auer & Mihalas
(1969) and uses an equivalent-two-level-atom (ETLA) approach
to account for PRD (see Hubeny 1985 and HGV for ETLA for-
malism with PRD). A similar code developed by Gouttebroze
uses only ETLA iterations together with PRD.

However, both these sophisticated codes are rather time-
consuming, even when used on the Cray-2 machine. Therefore,
it was highly desirable to test the possibility of applying fast ALI
techniques for such huge multilevel computations in finite-size
structures. Since there is strong interlocking between individ-
ual hydrogen atomic levels (icluding the continuum one) and
the geometry (externally irradiated 1D slabs) is different from
standard semi-infinite situations where ALI are now almost rou-
tinely applied - see papers in Kalkofen (1987) and Crivellari et
al. (1991) - it was not evident a priori how a multilevel ALI
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will work, i.e. the stability, convergence properties, accuracy,
ionization equilibrium etc. To test this, we proceed here in the
following way:
(1) We start with the multilevel ALI - so called MALI - ap-
proach recently proposed by Rybicki & Hummer (1991, 1992)
(we shall refer to these papers as to RH1 and RH2) and apply
it to a multilevel hydrogen atom with continuum. Our approxi-
mate lambda operator A* is simply diagonal, as also suggested
by these authors and by Auer & Paletou (1994) for the two-level
case.
(i) To obtain a MALI-based code for 1D prominence slabs, we
justreplaced the linearization part of our well-tested NLTE code
by the routines relevant to MALI. This also enabled us to test
the new results and properties of MALI code against those of
the original linearization code - both codes have essentially the
same structure and exactly same setup and inputs. For simplic-
ity, we use in this paper only the complete redistribution (CRD)
for Lyman lines, while MALI implementation with PRD will
be reported in another paper.

2. Multilevel ALI technique applied to 1D slabs

Recent reviews of various ALI approaches and their numerical
implementations to both solar and stellar semi-infinite atmo-
spheres can be found in Crivellari et al. (1991), Hubeny (1992)
and in the introduction to RH1. As it is now well established,
the general idea behind all ALI methods is to split the exact
lambda operator A,,,, (i is the directional cosine and v is the
frequency) into two parts

A,u,u = A:,u + (A/,u/ - A;y)? (1)
where AZ,, represents so-called approximate lambda operator.
Corresponding NLTE iteration procedure to obtain the depth-
dependent intensity of the radiation field I,,,, is

L = A2 (Sl + (M — AZISTI, )

where S, is the source function for a given transition (line or

continuum), Sl,, is its value from the previous iteration. If A;,,
is properly constructed (which is the art of all ALI methods),
this accelerated lambda iteration will converge much faster than
the ordinary lambda iterations. Several methods have been de-
signed to implement this ALI procedure to various multilevel
NLTE problems of stellar atmospheres and sophisticated codes
now exist which are far superior to classical ones (i.e. standard
linearization or ETLA).

In this paper we use the multilevel ALI technique to eval-
uate efficiently the excitation and ionization equilibrium of a
hydrogen plasma in externally irradiated 1D slabs. We consider
the same prominence models as in HGV and GHYV, i.e. isother-
mal and isobaric plasma slabs, symmetrically irradiated on both
sides by the incident diluted solar radiation. Note that a depth-
dependent temperature and pressure structure was also recently
considered (Rovira et al. 1994) and can be easily incorporated
into the present formulation. We shall return to some details of
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these prominence models in Sect. 4, but the reader can find all
relevant information in the HGV and GHV papers.

Given the input parameters 7', P, M and v; (T - kinetic tem-
perature, P - gas pressure, M - total column mass in direction
perpendicular to the 1D slab, v; - microturbulent velocity), the
problem of constructing NLTE prominence models reduces to
a solution of the radiative transfer equation for each explicitly
treated transition (the radiation field for selected optically-thin
transitions is held fixed and is given directly by diluted solar
radiation), the set of stationary statistical equilibrium equations
(ESE) and constraint equations like total particle-number and
charge conservation. So in the following we shall concentrate
mostly on this restricted NLTE problem. The difficulty arises
due to unknown distribution of electron densities n inside the
slab, i.e. the non-linear problem of hydrogen ionization equi-
librium must be solved. The task would be much easier if we
could consider n. as given by the input model (instead of P for
example) - in that case ESE are linear in the level populations.
We discuss this question in Sect. 5.

As already mentioned in the introduction, our approach to
this restricted NLTE problem closely follows the MALI ideas
of RH1 and RH2 and the reader should consult these two papers
for those details which are not explicitly described here.

2.1. Preconditioned ESE

Ordinary system of ESE for an atmospheric structure in a steady
state has the standard form (Mihalas 1978, RH1, RH2)

n Z(Ri]’ +Cij) — Z n;(Rji + Cji)
J J
+ ny(Rik + Cik) — ni(Ri;s + Cki) =0, (3)

where 4,7 = 1, NL (NL being the number of atomic bound
levels) and k denotes the continuum state. R;; are bound-bound
radiative rates, R, is the photoionization rate, while Ry is the
rate of radiative recombination. Using the notation of RH2, we
can express the radiative rates generally as

dv
Ry = /dQ/h_(Uu’ + V), 4)
v
where [ and [’ bring the values i, j for line transitions and i, k

for the continuum ones. The auxiliary functions U and V have
the classical form (Mihalas 1978, RH2)

hv L.
Uy = EAiquij(/v") v),1>j
Uij = O, i< j (5)
hv
Vij = EBij@j(#a v)
2h3
Uki = ne®i(D)—5-e ™"/ oy (v)
Ui =0 6)
Vii = ne®i(D)e /%y (v)
Vik = aw(@),
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where o, (v) is the photoionization cross-section and ®;(T') is
the Boltzmann-Saha factor (see Mihalas 1978). A;; and B;; are
the Einstein coefficients and ¢(u, ) represents the normalized
line profile function (in CRD approximation ¢;; = ¢;;).

C;;andC); are bound-bound collisional rates, Cy and Cy;
are the rates of collisional ionization and three-body recombi-
nation, respectively. If the electron density n., which appears
in these rates, is known, then ESE are linear in the level popula-
tions including the continuum state (an additional relation must
be added to get a closed system of N L + 1 linearly-independent
equations - see next subsection for such constraints). The system
of linear ESE can be easily solved for the level populations, pro-
vided that we know the radiation field in each transition which
is critical for evaluating the radiative rates.

The basic idea of preconditioning is to eliminate analytically
passiveradiative terms in ESE, by means of approximate lambda
operators A*. This is fully described in RH1 and RH2. Precondi-
tioning is thus used instead of linearizing the coupled system of
transfer equations and ESE, which is strongly non-linear in the
radiation fields and populations (so-called linearization method
of Auer & Mihalas 1969). Preconditioning versus linearization
is discussed in a review of Hubeny (1992). Various strategies
of preconditioning ESE are developed in RH1 and RH2, where
the general methods are described. However, any actual precon-
ditioning strategy becomes problem-dependent and there is no
need to use full preconditioning of RH2 in every case. In this
paper we concentrate ourselves on the case of the multilevel
atom with an active (resonance) continuum, but without any
overlap between explicitly treated transitions. Such situation is
very typical for hydrogen or some other species (Call problem)
in prominence-like structures.

In the case of hydrogen, the lines (first members of each se-
ries) can be treated either explicitly within the ALI-formalism,
or for some of them the radiation intensity inside the struc-
ture is fixed by the diluted incident solar radiation (typically
subordinate lines which are optically thin). These lines are non-
overlapping. The only continuum treated explicitly is the res-
onance Lyman continuum (mostly optically thick - see GHV
models), while other continua (subordinate) are optically very
thin and thus their intensities are also fixed by the diluted inci-
dent solar radiation. These subordinate continua ovelap among
themselves and with the lines and we treat them as background
continua in opacities. Their radiative rates in ESE are held fixed
and are precomputed from diluted solar radiation.

In the following we shall formulate our preconditioning
strategy which is basically identical to that described in RH1
(their Sect. 2.2), with simple generalization for the active con-
tinuum (which is anyway inherent in quite general formulas of
RH2). The source function for a given frequency is written as

S =118, +(1 = rh)s)

be

O
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where z is either ij for lines or ¢ for continuum. The ratio rl
takes the form

xl(u, V)
i

e Xy
XI(.LLa V) + XIC(V)

®)

where s are the line, continuum and background (bc) opacities.
AsinRHI, all these quantities are taken from the previous itera-
tion, which is again denoted by 1 (otherwise the preconditioned
ESE would not be linear in populations). The source function

for background continua is SJC. In the present exploratory com-
putations we neglect the electron scattering, which is anyway
of low importance for most isolated structures.

The line source function takes the form

njUj~

— 9
nVij —n;Vji ®

Sy, v) =

which, assuming CRD, reduces to the standard formula for
frequency-independent and isotropic line source function

njAj‘

Spi= ——0 I
j .
n,-Bij — nij~

(10)

The isotropic resonance continuum source function is writ-
ten as

ngUgi

S, =0
) i Vig — ng Vi

an

Using this formalism and Eq. (2), we can express the inten-
sities of the radiation field as

T.g1

T (L')

I“,, A;u . 7‘1 - Sy + (A/J,I/[S/,-[V] - A;u T

1
o= o / 1,49,

where z is again either 5 (lines) or ¢ (continuum) and J, is
the mean intensity of the radiation field. Note that the terms

(12)

with Sgc have cancelled in this equation. Here we have replaced
A}, [Syy] by ordinary product A, - S, which is validated by
the use of a diagonal A* in this paper (Sect. 2.3).

According to RH1, we write for line transitions 7j

- 1
Jij = E/dﬂ/dwbij(ﬂa )
= A:] . S,'j + J;ff 13
* 1 *
Ay = H/dﬂ/dwﬁij(#a ’/)Auurz'rj

off — ji f
it = Jy - A S
where J;; is the mean integrated intensity appearing in the
bound-bound radiative rates and ¢;; is the line profile func-
tion. For the active continuum, J,, is used instead of J and we
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can write

1

J, = o / 1,,dQ
= A) - S.(v)+ I (v) (14)
Ny = Az, rldo

ar

T W) = I - M) - S]).

The quantities ijf 7 and J¢# 1 are evaluated from the previous
iteration.

Inserting these expressions into ESE, we obtain the precon-
ditioned ESE which no longer contain the unknown radiation
field intensities. The preconditioned ESE have essentially the
same form as the ordinary ones, with the following replace-
ments made

Aij — A1 = A7) @GE>7) (15)
jij — szf

for line transitions, and

Vik — Vikll — AZ(»)]  (photoionization) (16)

J, = I W)

for the active resonance continuum (integration over v is then
performed according to Eq. (4)).

These replacements represent a simple modification of ordi-
nary ESE. Similar formalism can be used also for other species,
if the explicitly treated transitions are non-overlapping. In the
case of an overlap, a more sophisticated preconditioning strat-
egy called full preconditioning (RH2) has to be used or one
can linearize partially preconditioned ESE with respect to level
populations.

2.2. Linearization of preconditioned ESE and constraint equa-
tions

For given electron density n., the set of preconditioned ESE is
linear in atomic level populations, even when the active (Ly-
man in our case) continuum is included. However, if we want to
solve ESE (together with the constraint equations) also for the
unknown distribution of n., the problem becomes non-linear
due to various products of n. with the level populations includ-
ing the continuum state. At low plasma densities, these terms
are not critically important and thus an iterative solution of pre-
conditioned ESE for atomic level populations is possible, keep-
ing n and ng (ne = ng in our case) fixed during the solution
of ESE. However, for medium and higher densities, non-linear
terms start to play an impotant role and the convergence proper-
ties of such simple iterative procedure are not satisfactory. We
have performed several numerical tests which indicate that even
if a converged solution is apparently achieved, such a solution
is not correct - the situation resembling a stabilization of the
standard A iteration to a solution which is far from the true one.

To overcome these difficulties, we have linearized the pre-
conditioned ESE with respect to all level populations, including
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the continuum state ng and the electron density n.. We write
the preconditioned ESE in a general form
Fi(nj,ng,ne) =0 (,7=1,NL) a7
and the constraint equations (i.e. the total particle-number con-
servation and the charge conservation) as

NL
(1+a)2nj+(1+a)nk+ne =N
j=1
= P/kT (18)
Ng = Ne

(IV L is the number of bound levels treated in ESE, N represents
the total particle number density). « is the abundance ratio of
He relative to H (helium is supposed to be neutral in the present
exploratory computations, but we include it in order to obtain re-
alistic plasma density p). Expansion of ESE and both constraint
equations to the first order in the particle number densities leads
to a set of linearized equations of the form

Z( ) T6n3+( ) Tan“(—-) ton, =

—Fynl,nf,nl) (19)
NL
(1+0) ) 6n;+ (1 +a)bng +bn, =

j=1

NL
N—[(1+0) Y nl +(1+mn] +n]

j=1

ong — One = nl —nl.

These equations are linear in 6n5, 6ny, and 6n. and can be easily
solved as a system of VL + 2 linear algebraic equations. Left-
hand sides of first N L equations have the same structure as
the ordinary ESE. n' denote the populations taken from the
previous iteration. Once én are evaluated, the new populations
can be obtained as

n=nl+én (20)

(generalized Newton-Raphson iteration procedure). Complete
iteration scheme is described in the next section. Note that in this
approach we don’t linearize ESE with respect to the intensities
of the radiation field (as in complete linearization method of
Auer & Mihalas 1969), because our linearized ESE have been
preconditioned which already ensures a global coupling to the
radiation field. As we shall demonstrate, this method works
extremely well in the case of isolated atmospheric structures, as
all our numerical tests do indicate.

2.3. Construction of diagonal A* operator

Various forms of A* have been used in the literature. This oper-
ator must satisfy two competitive conditions: (i) its form must
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be as simple as possible to ensure the computational efficiency
of the corresponding ALI method, and (ii) its form must re-
flect the basic features of the transfer problem, otherwise the
satisfactory convergence is not achieved. Here we present two
explicit forms of a diagonal A* operator, which are used in our
implementation of MALI. Note that our approach is different
from that used for a two-level atom by Paletou et al. (1993) and
Auer & Paletou (1994).

To construct the diagonal A* operator, we proceed here in
the following way. At any internal depth point d inside the slab
we discretize the second-order transfer equation (Mihalas 1978)

2 2

@1 1 7
“ A Apta-1+ [1+ E(A—T_ + E)]Ud - mudn
= Sy 21)
AT_ = Tg— Tg—
ATy = Tgy —7d
AT = (ATe + AT)/2
d=2..D-1

(¢ > 0 is the directional cosine, the frequency subscript v was
omitted). For static media, the standard Feautrier variable u =
1

3 (I P +1_ M)'

Using the second-order boundary conditions (Auer 1967)
for symmetrically irradiated 1D slab, we arrive at similar ex-
pressions at d = 1 and d = D (D is the depth point at the center
of the symmetrical slab)

2u 2u? 2u? 2u
1 il At 2 rinc o)
T+ ATy * At? yur Ar? ur=Sit ATy @2)
Am, = —11 = An
d=1
2 2
-K’;—Eup_l +(1+A—l:_2)uD=SD 23)
AT_ = 7p—7Tp-1 = A1p
d=D.
I'n¢ = J(—p,v) is the intensity of the incident solar radiation

(see Sect. 3.3).

Now we can write, in a matrix form
Tu=S, 24
where T is a tridiagonal matrix with the elements fol-
lowing from Egs. (21) - (23), u=(vy,...,up) and S=(S; +

Z2/:_l[inc, Sy, ..., 8p). Solving for u we shall have

u=T!'S=AS. (25)
Full matrix A represents the exact A operator. According to
Olson et al. (1986 - OAB), its diagonal is nearly optimum rep-
resentation of A*. However, an evaluation of A* in this direct
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way requires the inversion of the matrix T and this is compu-
tationally prohibitive. Several approaches have been devised to
effectively overcome this difficulty.

As suggested by OAB, one can approximately write

Ug1 =~ uge AT-/H (26)

Uger = uge BT/

Inserting these expressions into Egs. (21) - (23), we obtain the
diagonal operator T, which is an approximation to the exact
T'. Then we can construct an approximate diagonal A* operator
as a simple inverse of the matrix elements

Ajg =T~ d=1,..,D). 7)
Final expressions for diagonal matrix elements of A* take the
form

* 2/"’ 2/"’2 —AT/puy—1
o= UGy + D 31— e
1 —e Am/ ] — e AT/
* 2 -1
Adg = [T+ ATAT, ATAT_ )] %)

2 2
oo = [1+ —Ai%(l — e AT/t
TZ

Another way of evaluating the diagonal elements of A* op-
erator was recently suggested by RH1. Their method is based on
the original Feautrier scheme for solving Eqs. (21) - (23). A},
are easily obtained during the formal solution of the transfer
equation by the Feautrier method (in the backward sweep)

Asy=(1—=D3Eg1) " (Bqg— AaDag1)"", (29)
where
Ey=(By— C4Eq1) "' Ag (Eps1 =0). (30)

The coefficients Ay, By, C4(d = 1, D) are those of the tridi-
agonal matrix T and Dy corresponds to the standard Gaussian
elimination scheme

Dg=(Bg— A¢D4_1)"'Cy. (€29)

For details see the Appendix B in RH1.

Finally, for static structures, we can simply write (see Egs.
(13) and (14))

1
/ dV¢ij(V)7":rj /0 dpAg,

1
rfw) /0 dphly

*
A

(32

Az )

and these quantities enter the preconditioned ESE and their lin-
earized equivalents through Eqgs. (15) and (16). Atd = 1, terms
containing the expression A}, -(2uI*"¢/ Ary) will cancel in Egs.
(13) and (14) since they remain unchanged between the two
consecutive iterations (similarly as in the case of background

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...299..563H

FTY9O5ACAT & ZZ997 !

568

continua). Therefore, the incident radiation affects the solution
of our NLTE problem only through the term ijf for JeS  In
the formal solution of the transfer equation, an isotropic diluted
incident radiation is used in the boundary conditions and the
solution is performed consecutively for several selected p). Fi-
nally, in order to get the emergent synthetic spectrum, we must
distinguish between two different situations. First, the structure
is observed on the solar limb (e.g. the prominences as treated by
HGV and GHV) and then no incident radiation enters the slab
along the line-of-sight. Second, the structures are seen in pro-
jection against the solar disk (like loops or mottles, see Heinzel
et al. 1992 or Heinzel & Schmieder 1994) and then the specific
intensity of the disk radiation along the line-of-sight enters the
boundary condition when evaluating the synthetic spectrum.

All these equations can be easily generalized to a non-
symmetrical 1D slab (i.e. irradiated only from one side, for
example) or to other 1D geometries (symmetrical cylinders).
We shall study these situations in other papers.

3. Numerical implementation of MALI
3.1. MALI code

In order to test numerically the implementation of MALI to
1D structures, we have modified our well-tested NLTE promi-
nence code which is based on the standard linearization method
of Auer & Mihalas (1969) (see HGV). We just replaced those
subroutines in the linearization code which solve the non-linear
system of radiative transfer and statistical equilibrium equations
by new ones based on the MALI approach as described in the
previous sections. In this way we obtained a new code which,
however, has the same global structure and exactly same setup
and input as the previous one. This allows us to compare, in a
straightforward way, the results obtained with the MALI version
(MALI code) against those obtained with the original lineariza-
tion version (LIN code). The results obtained with the LIN code
thus serve as benchmarks for our tests of the MALI code.

To be consistent with the LIN code, the formal solution of
the transfer equation is performed using the standard Feautrier
scheme (Mihalas 1978). Three angles are used to describe the
anisotropy of the radiation field and 47 depth points cover one-
half of the symmetrical 1D slab (we use the log-scale, with 5
points per decade). During each formal solution of the transfer
equation, we evaluate simultaneously the approximate opera-
tors according to the formulas from Sect. 2.3. After extensive
numerical experimentation we have realized that there exist var-
ious strategies how to proceed within one iteration cycle. In the
computations discussed below we used the following scheme.
First, opacities and emissivities are evaluated for current values
of level populations. Then we perform the formal solution of the
transfer equation which gives us the current radiation fields and
approximate operators, for three angles. Then we solve the pre-
conditioned ESE with current electron density - these equations
are linear in atomic level populations. The updated populations
finally enter the linearized set of preconditioned ESE, which are
solved for corrections to level populations and electron density.
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This procedure is repeated until the maximum relative changes
in all populations and electron density (at all depths) are less
than a prescribed value (typically 10~3). After the convergence
is reached, we evaluate the synthetic spectrum.

For tests we use a five-level hydrogen model atom with
continuum. As in LIN, all optically-thick transitions are treated
explicitly within the MALI formalism. These are all Lyman
lines (in CRD), Lyman continuum, Ha: and H3 (together 60
frequency points). The radiation field for the remaining transi-
tions is held fixed and corresponds to the diluted incident solar
radiation (see HGV and GHYV for details). Incident radiation
for explicit transitions is the same as in GHV (for the height
H = 10000 km). Collisional rates are evaluated with the rou-
tine taken from Mihalas et al. (1975).

3.2. Initial hydrogen level populations

There are several useful strategies how to estimate the initial hy-
drogen level populations in prominence-like isolated structures.
Populations of the lowest hydrogen levels are typically far from
LTE values because, for lower gas pressures, the excitation and
ionization of hydrogen is almost entirely driven by the incident
solar radiation (see Table 1 in GHV for NLTE b-factors).

Once the electron density at the slab center had been some-
how estimated, the initial hydrogen level populations can be
determined as follows. Assuming a mixture of the hydrogen
and helium atoms in a prominence plasma, we can write for the
hydrogen ground-level population
ny ~ [N — Q2 +an.l/(1+a), (33)
where N = P/kT (total particle number density) and « is the
abundance ratio of He relative to H (here o = 0.1). n. = ng
(proton density) since the helium is supposed to be neutral.
n; ~ nyr (neutral hydrogen density), populations of excited
hydrogen levels are several orders of magnitude lower than n; -
see Table 2 in HGV paper. Then accordingly to several authors
(e.g. Heinzel et al. 1994)
ny =~ const nﬁ s (34)
where the constant is of the order of 10~!7. Initial populations
of higher levels are taken to be in LTE, for given temperature
and electron density
ng ~ n} =ntd(T) (G>2). (35)
For higher-pressure models it may be better to start with LTE
even for ny, i.e. ny >~ nﬁsz(T). Moreover, if n; < 0 for given
estimate of n., we either lower initial n, in Eq. (33) (we rec-
ommend this) or evaluate all initial level populations in LTE for
starting value of the electron density.

For an assumed prominence model, initial slab-center elec-
tron density can be estimated using the extensive tables of GHV
or the relation between the gas pressure P and n. (Heinzel et
al. 1994). It follows from our experience with numerical imple-
mentation of the MALI technique to prominences that in some
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cases the convergence is faster when starting with somewhat
lower n. than indicated above.

These estimates of initial n. (also denoted as n2) and n;
have been made for slab center and used at all other depths.
In fact, approaching the slab surface, the convergence of our
NLTE problem is not critically dependent on the initial popu-
lations, particularly for strongly irradiated, low-density isother-
mal structures.

3.3. Evaluation of I'"*

Assuming an isotropic incident radiation, I*"*¢ = Jin¢ =
1/2 f_11 IO, dp. IE,, is the limb-darkened incident solar radi-
ation intensity. J"¢ is simply the mean intensity of the incident
solar radiation field, at a given height above the solar surface.
Note that our 1D formulation of the transfer problem requires
that I*"¢ is symmetrical around the axis p = 1, i.e. the axis per-
pendicular to the slab. We use two possibilities how to evaluate
Jine:

(i) We assume no center-to-limb variations (i.e. darkening or
brightening) of I®, which leads to the relation Ji"¢ = IQ(u =
1) x W. I2(u = 1) is the solar radiation specific intensity as
measured at the disk center and W is the classical dilution factor

R2

“wem

W = %[1 -Q (36)
R and H stand for the solar radius and the height of the structure
above the solar surface, respectively.
(i1) Assuming the limb variations of the incident radiation, we
get Jin¢ = 1/2 f_ll If?,,d,u. This integral can be evaluated nu-
merically, e.g. using the approach of Heinzel (1983).

To evaluate J2 for hydrogen transitions, we use the variant
(i) for all UV-transitions (i.e. the Lyman lines and continuum)
and (ii) for all subordinate lines (Balmer, Paschen, etc.) - for
details see HGV and GHV. Generally speaking, all NLTE mod-
els of isolated solar structures (prominences) are very sensitive
to boundary conditions and to the incident radiation intensities
involved in them.

4. Results of numerical tests with the MALI code
4.1. GHV-models used for tests

In order to test our MALI code, we use several representative
models from an extensive GHV grid. However, we don’t com-
pare GHV results directly to ours, but rather we use these models
together with the LIN code in order to obtain NLTE benchmark
solutions. Computations have been performed for models with
a typical prominence temperature 7" = 8000 K and for extremal
gas pressures and geometrical thicknesses, according to GHV
(see Table 1 for selected GHV models).

4.2. Convergence properties

All MALI computations have been performed using the lin-
earization of preconditioned ESE. This leads to very favourable
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Table 1. GHV models used for MALI tests

# T P M D vy nY

K dyncm™? gem™?  km  kms™' cm™?

57 8000 0.01 5.676E-7 500 5 3.8E09

63 8000 1.00 7.786E-5 500 5 1.9E11

74 8000 0.10 2.759E-5 2000 5 2.7E10

78 8000 0.01 5.630E-6 5000 5 3.8E09

81 8000 0.10 6.791E-5 5000 5 2.8E10

84 8000 1.00 7.206E-4 5000 5 2.5E11

model #81

BTN T T O T T ST T T Y S O T WY S0 Y T WO SN Y S O OO VAR B TG WO U Y Ay

(9] 20 40 60 80
iterations

max rel changes in pops (solid) and el. dens (dash)

Fig. 1. Convergence plot for the model #81. 80 MALI iterations with
linearized ESE are displayed. Upper pair of curves corresponds to ini-
tial LTE populations, lower one to a NLTE initial guess

10 ~°

10 ¢

model #81
10 7

S SN VA O T W DU N SO N SO T T T S N OO YONC S N S T T T N NN Y SO WY S OO W 0 1

10 ~%
20 40 60 80
iterations

max rel changes in pops (solid) and el. dens (dash)
o
IS

Fig. 2. Comparison of convergence properties of OAB and RH1 diag-
onal A* operators. A NLTE initial guess of the level populations was
used
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I convergence properties, even when no acceleration is used. The
rate of the convergence typically depends on the atmospheric
model and on the starting estimate of the electron density and
hydrogen level populations. In Fig. 1 we show a typical example
of the convergence properties pertinent to OAB-operator. Maxi-
mum relative changes (for all depths) in all hydrogen level pop-
ulations and the electron density (An;/n; and An,/n.) have
been plotted for each iteration of MALI. We have started with
a constant n0 through the slab (Table 1). The convergence is
much better if we start with NLTE level populations estimate
suggested above. With LTE populations as an initial guess we
see certain oscillations at the onset of the iterative procedure
which results in a slower convergence. In Table 2 we summa-
rize the results obtained for most typical prominence models
with 7" = 8000 K. In the individual columns we give respec-
tively the number of iterations necessary to achieve the relative
accuracy 1073 and 10~* (i.e. the maximum value as can be
inferred from figures like Fig. 1). We see that higher-pressure
(or density) models typically require more iterations, both for
MALI and LIN cases. In Fig. 2 we compare the convergence
properties of OAB and RH1 diagonal operators, for a typical
prominence model #81. We see very similar behaviour of both
these operators, as also found by Hubeny (1994) in other situa-
tions.

From Table 2 we can estimate the relative speed of both
codes. All computations have been performed on the Digital
VAX-Station 3100 (under VMS-operating system) and a mean
CPU-time per iteration was about 50 sec for LIN, 2 sec for
MALI with OAB operator and around 1 sec for MALI with
RH1 diagonal operator. With the numbers of iterations from
Table 2 we may conclude that the present version of the MALI
code is more than one order of magnitude faster as compared to
the LIN code. A proper implementation of acceleration schemes
(Ng or ORTHOMIN) should further improve the convergence
rate. Note also that MALI code requires much less computer
memory (LIN works with large matrices).

We have made several tests also for other GHV models with
lowest (4300 K) and highest (15000 K) temperatures. The re-
sults are quite similar to those reported above. Moreover, for
some low-temperature models we have met certain difficulties
to reach the convergence with the LIN code, while MALI has
been proved to be stable in all cases. '

Finally, in Figs. 3 and 4 we demonstrate the convergence
properties of MALI as compared to those of standard lambda
iterations for model #81. The failure of standard lambda iter-
ations in the case of a two-level-atom source function is well
known (see e.g. Auer 1991). Here we demonstrate the multi-
level behaviour by plotting the source function for Lo and Ho
lines versus depth, for several iterations. Again, an unfavourable
behaviour of lambda iterations is clearly evident, namely for op-
tically thick (19 ~ 10°) La line (100 iterations are plotted). The
situation is less critical for Ha which has 79 ~ 1, but non-linear
multilevel coupling still causes important departures from the
correct solution, particularly at the slab center. On the contrary,
MALI converges within about 30 iterations to the same solution
as obtained with the LIN code (at the beginning we have per-
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Table 2. Convergence and accuracy

# MALI LIN MALI LIN A
103 @™ @t ot %
57 7 4 37 5 0.9
63 31 12 48 15 32
78 13 5 27 7 0.8
81 26 10 42 14 2.0
84 38 15 56 22 3.1

formed 5 lambda iterations to smooth the initial guess). Depths
in Figs. 3 and 4 are represented by the numbers of individ-
ual grid points. Since we use the log-scale for the depth grid,
first 20-25 points correspond to the region where Ho is almost
completely transparent. Therefore, S(Ha) can be regarded as
practically constant in the 1D slab for lower-pressure models
(see also GHV). An increase of the Ha source function towards
the slab surface takes place in the region of L3 line formation
and thus seems to be related to multilevel interlocking effects.

4.3. Accuracy

The benchmarks computed with the LIN code allowed us to es-
timate an "absolute” accuracy of the MALI code. To do this, we
have computed for each model from Table 1 (through all depths)
the maximum relative difference for all level populations and
ne between MALI and LIN solution

ni(MALI) — n;(LIN)
ny(LIN)

A = maz | | . 37

We can see in Table 2 that A (in %) varies for typical mod-
els between 1 to 3 %. Although both LIN and MALI codes
have basically same setup and we use the exactly same input
data, this rather unimportant difference persists apparently due
to quite different numerical approaches to solve the non-linear
NLTE problem (linearization versus preconditioning). Similar
conclusions have been made also by Hubeny (1994). Note also
that heavy comparisons and tests between the LIN code and
ETLA-based code of Gouttebroze (see GHV paper for discus-
sion), using again exactly same input, led to A equal to a few %.
RH1 have achieved an accuracy of about 1% for their MALI-L
solution (ESE linear in level populations, n. given), as com-
pared to the benchmark ETLA solution of NLTE line transfer in
a three-level hydrogen atom without continuum, performed by
Avrett & Loeser (1987). We envisage that A could be lowered
by using a finer depth grid.

5. Models parametrized by the electron density
5.1. General comments

In all previously discussed computations we have used as a ba-
sic model parameter set (7', P, M, v;), i.e. isobaric-isothermal
models. As the output we get consistently the depth-dependent
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Fig. 3. a Convergence properties of ordinary lambda iterations. Depth variations of the Lo line source function are shown for 100 iterations
and for model #81. Depth points span the half of a symmetrical 1D slab, with d=1 at the surface and d=47 in the slab center. S is expressed in
units of the line-center intensity. b Convergence properties of MALI iterations. Depth variations of the La line source function are shown for

30 iterations and for model #81
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Fig. 4. Same as in Fig. 3. but for the Ho line. Here S is expressed in % of the disk-center continuum near Ho

n. and the gas density p, which gives the geometrical thick-
ness D = fOM(l /p)dm. This is a fundamental approach since
T and P represent the basic thermodynamical plasma param-
eters which are coupled to other quantities through the MHD
equations (a generalization to depth-varying 7" and P is straight-
forward). Ionization structure of the atmosphere is then consis-
tently evaluated using the linearized preconditioned ESE.

However, in some cases we are directly interested in the
electron density of the structure, which means that we want to
specify the set (T, ne, D, v;). n. is then assumed to be con-
stant through the slab, which is approximately true for most
prominence-like, isobaric-isothermal models, as follows from

GHYV tables. For the analysis of Ha-line MSDP observations
in terms of (T, n., D, v;) see e.g. Wiik et al. (1992), Heinzel
& Schmieder (1994) or Schmieder et al. (1994). In the case
of prescribed n., one can use the linear set of preconditioned
ESE to solve the NLTE problem, no linearization (Sect. 2.2) is
necessary. After the convergence is achieved, we may finally
evaluate P and p. However, this simpler MALI approach (lin-
ear ESE), although practical in some cases, is not fully equiv-
alent to the fundamental one with the input (T, P, M or D, v;).
The reason is that depth-variations of P generally follow from
MHD equations, while depth-variations of n, come partly from
depth-dependence of P and partly from NLTE ionization struc-
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ture of the atmosphere. For example, in the case of a hydrostatic
equilibrium, we can directly obtain the run of pressure with the
column mass m, P = mg (g is the gravitational acceleration,
P is the total pressure), but we cannot prescribe physically re-
alistic depth variations of n. unless the non-linear NLTE prob-
lem is solved. For some quiescent prominence models, pressure
balance leads to an isobaric structure for which n. is however
depth-dependent. Assuming n. to be constant, we shall arrive at
depth-dependent P which is unrealistic for these specific mod-
els.

5.2. Partial-redistribution effects

Considering further the models parametrized by the electron
density, we have nevertheless found one very important advan-
tage of such approach if applied to an analysis of Ha observa-
tions. Namely, we can easily avoid rather complicated solutions
with partial frequency redistributions (PRD) in resonance Ly-
man lines. As discussed by HGV, He line intensity as well as
ne are affected by PRD through multilevel interlocking. For
low-density models, the integrated Her intensity can be higher
in PRD-case by about 30% as compared to CRD-case and also
ne in the slab center is higher. Therefore, a detailed analysis of
high-quality Ha data requires the full PRD approach (MALI
modelling with PRD of Hubeny & Lites (1994) will be de-
scribed in a subsequent paper). However, since He itself is nor-
mally treated within CRD approximation (HGV, GHV, Hubeny
& Lites 1994), we can use the present MALI/CRD code with the
input set (T', ne, D, v4) to get realistic Ho intensity as it would
be evaluated with fully PRD code. The reason is that Ho and
other Balmer lines are strongly coupled to the electron density
(Heinzel et al. 1994) and it is n. which is primarily affected
by PRD effects. Moreover, Lyman lines are optically very thick
in the region of He line formation (approaching the detailed
radiative balance), so that it is of low importance whether we
take CRD or PRD when evaluating their radiative rates.

To check this idea, we have made test computations for GHV
model #74 (Table 1) for which detailed PRD solution with a 5-
level atom plus continuum was obtained by using our LIN/PRD
code (see HGV for description of this code). The slab-center
ne, evaluated by LIN/PRD code, was subsequently used as the
input (i.e. n. constant) in the version of MALI code with linear
preconditioned ESE. The resulting integrated Ho intensity is
almost exactly same as that obtained by LIN/PRD code, with
differenceless than 1%. Also the populations of all excited levels
agree quite well which we explain by strong coupling of these
levels to the continuum state and thus to n. (n., = ny which is
the same in both LIN/PRD and MALI computations). Of course,
n; and the intensities of Lyman lines and Lyman continuum are
inconsistent with PRD solution by a significant factor and the
computed gas pressure is also different from PRD-value. For this
model, a true difference between PRD and CRD He integrated
intensities (i.e. for given P = 0.1 dyn cm~2) amounts to 43%.

Therefore, we see that such an approach to Ha line forma-
tion leads to very reasonable results, while inaccuracies caused
by assuming a constant electron density can be of a secondary
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importance. Moreover, putting the Lyman transitions into de-
tailed radiative balance in ESE, we will substantially lower the
number of frequency points in MALI solution. In this way we
can obtain an extremely fast and relatively accurate approximate
method of computing the Balmer lines intensities, particularly
Ha. This can be easily coupled to velocity fields.

6. Conclusions

We have developed a new multilevel NLTE transfer code for 1D
isolated atmospheric structures, based on the MALI approach
of RH1 and RH2. In its present CRD-version, this MALI code
was applied to a 5-level plus continuum hydrogen problem. It
was extensively tested against the benchmark results provided
by a similar code but based on the linearization method of Auer
& Mihalas (1969) (LIN code of HGV). All tests have been per-
formed with selected models of GHV.

It was demonstrated that the MALI approach is fully capa-
ble of treating the hydrogen excitation and ionization balance in
such isolated, externally irradiated, 1D structures (slabs in this
paper), provided that the preconditioned statistical equilibrium
equations (ESE) are linearized with respect to all atomic level
populations and the electron density. This linearization, which
represents a generalization of the original MALI approach, is
necessary for evaluating the hydrogen ionization structure inside
the 1D slabs. The method works equally well for semi-infinite
atmospheres. However, for certain class of models where a con-
stant electron density is used as the input (i.e. n, is known), the
preconditioned ESE are linear in level populations. By compar-
ing with the original LIN code of HGV, MALI code is more
than one order of magnitude faster for typical model situations,
depending on the choice of A* operator. Also the accuracy of
the MALI code was found to be quite satisfactory, as tested on
GHYV models. The MALI technique implemented to isolated 1D
structures seems to be robust and stable, even in cases where
the LIN code meets certain difficulties with the convergence.
For practical use, the efficiency can be further improved using
a suitable acceleration scheme (Ng, ORTHOMIN).

Similarly as in LIN/PRD code of HGV, we plan to com-
bine the present MALI code with ETLA-based PRD iterations
in order to account for PRD in resonance Lyman lines and for
Raman scattering. In this way we can investigate an importance
of PRD-interlocking effects, as was recently done by Hubeny
& Lites (1994) for the quiet solar chromosphere. Generaliza-
tion of the present approach to other geometries (2D slabs) is
rather straightforward and requires an efficient method for for-
mal solution of the transfer equation (Paletou 1994). Because
of its speed efficiency, MALI can be also used in a combination
with the IBC method of Heinzel (1991) to treat inhomogeneous
atmospheres.

In subsequent papers we shall apply our MALI approach to
various isolated structures and perform NLTE computations for
chemical species other than hydrogen.

Acknowledgements. A substantial part of this work has been done dur-
ing author’s stay at Observatoire de Meudon. He would like to express

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...299..563H

rIYY5ACA T TZ90 T563H!

P. Heinzel: Multilevel NLTE radiative transfer in isolated atmospheric structures

his gratitude for useful discussions, support and kind hospitality. Most
computations have been performed on Digital VAX Station 3100 at
DASOP-URA326. The author is indebted to Dr. I. Hubeny for critical
reading of the manuscript. Several discussions with colleagues from
IAS (Orsay) and HAO (Boulder), particularly with Dr. F. Paletou, are
also highly acknowledged.

References

Auer L.H,, 1967, ApJ 150, L53

Auer L.H., 1991, in: Crivellari L., Hubeny 1., Hummer D.G. (eds.)
Stellar Atmospheres: Beyond Classical Models, NATO-ASI Series
C 341, Kluwer Acad. Publ., Dordrecht, 9

Auer L.H., Mihalas D., 1969, ApJ 158, 641

Auer L.H., Paletou F,, 1994, A&A 285, 675

Avrett E.H., Loeser R., 1987, in: Kalkofen W. (ed.) Numerical Radia-
tive Transfer, Cambridge Univ. Press, Cambridge, 135

Crivellari L., Hubeny 1., Hummer D.G. (eds.), 1991, Stellar At-
mospheres: Beyond Classical Models, NATO-ASI Series C 341,
Kluwer Acad. Publ., Dordrecht

Fontenla J.M., Reichmann E.J., Tandberg-Hanssen E., 1988, ApJ 329,
464

Gouttebroze P., Heinzel P., Vial J.-C., 1993, A&AS 99, 513 (GHV)

Heinzel P.,, 1983, Bull. Astron. Inst. Czechosl. 34, 1

Heinzel P., 1991, in: Crivellari L., Hubeny 1., Hummer D.G. (eds.)
Stellar Atmospheres: Beyond Classical Models, NATO-ASI Series
C 341, Kluwer Acad. Publ., Dordrecht, 297

Heinzel P., Schmieder B., 1994, A&A 282, 939

Heinzel P., Gouttebroze P., Vial J.-C., 1987, A&A 183, 351 (HGV)

Heinzel P., Gouttebroze P., Vial J.-C., 1994, A&A 292, 656

Heinzel P., Schmieder B., Mein P., 1992, Solar Phys. 139, 81

Hubeny 1., 1985, Bull. Astron. Inst. Czechosl. 36, 1 :

Hubeny I., 1992, in: Heber U., Jeffery C.J. (eds.) The Atmospheres
of Early-Type Stars, Lecture Notes in Phys. 401, Springer-Verlag,
Berlin, 377

Hubeny 1., 1994, private communication

Hubeny 1., Lites B., 1994, ApJ in press

Kalkofen W. (ed.), 1987, Numerical Radiative Transfer, Cambridge
Univ. Press, Cambridge

Mihalas D., 1978, Stellar Atmospheres, 2nd edn.,W.H. Freeman, San
Francisco

Mihalas D., Heasley J.N., Auer L.H., 1975, A Non-LTE Model Stel-
lar Atmosphere Computer Program, NCAR-TN/STR-104, HAO-
NCAR, Boulder

Olson G.L., Auer L.H., Buchler J.R., 1986, JQSRT 35, 431 (OAB)

Paletou F,, 1994, A&A submitted

Paletou F,, Vial J.-C., Auer L.H., 1993, A&A 274, 571

Rovira M.G., Fontenla, J.M., Vial J.-C., Gouttebroze P., 1994, in: RuSin
V., Heinzel P,, Vial J.-C. (eds.) Solar Coronal Structures, Proc. IAU
Coll. 144, Veda Publ. House, 315

Rusin V., Heinzel P., Vial J.-C. (eds.), 1994, Solar Coronal Structures,
Proc. IAU Coll. 144, Veda Publ. House, Slovak Acad. Sci.

Ruzdjak V., Tandberg-Hanssen E. (eds.), 1990, Dynamics of Quiescent
Prominences, Proc. IAU Coll. 117, Lecture Notes in Phys. 363,
Springer-Verlag, Berlin

Rybicki G.B., Hummer D.G., 1991, A&A 245, 171 (RH1)

Rybicki G.B., Hummer D.G., 1992, A&A 262, 209 (RH2)

Schmieder B., Heinzel P., Wiik J.E., Lemen L., Anwar B., Kotr¢ P,
Hiei E., 1994, Solar Phys. in press

Wiik J.E., Heinzel P., Schmieder B., 1992, A&A 260, 419

573

This article was processed by the author using Springer-Verlag IATEX
A&A style file version 3.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...299..563H

