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Abstract
This article presents an on-line tool and its accompanying software resources
for the numerical solution of basic radiation transfer out of local thermo-
dynamic equilibrium (LTE). State-of-the-art stationary iterative methods such
as Accelerated Λ-iteration and Gauss–Seidel schemes, using a short char-
acteristics-based formal solver are used. We also comment on typical
numerical experiments associated to the basic non-LTE radiation problem.
These resources are intended for the largest use and benefit, in support to more
classical radiation transfer lectures usually given at the Master level.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The theory of radiation transfer is of paramount importance for astrophysics. Indeed, except
for those objects in the solar system close enough to us for being explored in situ, from the
collection of lunar samples back in the 1970s to the spectacular landing of the Philae
spacecraft and its instruments on-board, on comet Churyumov–Gerasimenko in November
2014, our knowledge of the Universe overwhelmingly comes from the analysis of the light we
collect from distant objects.
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For the emblematic case of stars, photons are generated in the central parts of the body.
They first scatter across its internal and still opaque layers, finally escaping the star at the
bottom of its atmosphere or photosphere. These photons will continue to be scattered
through the most external layers (and any possible circumstellar structures therein, like for
instance solar prominences lying in the corona) of the star, before reaching the interstellar
medium and travel into space down to our instruments. Finally, stellar light will
scatter again through the Earth atmosphere, when one considers ground-based astronomical
observations.

The issue of how radiation transfers along these media of distinct physical nature, in
terms of density, temperature, dynamics, magnetic field etc thus appears as quite obvious.
And even though we shall discard hereafter any discussion about terrestrial atmospheric
effects, radiation transfer through stellar atmospheres still is a very difficult problem of
physics. It relies indeed on complex nonlinear light–matter interactions (see e.g., Hubeny and
Mihalas 2014).

The equation of radiative transfer is very likely to be present in all astrophysics courses,
more likely at the Master level. Analytical solutions are very few, but they can quite easily be
taught and fully derived within a few lectures of introduction to the radiation transfer theory.
Despite the often very crude approximations used in these cases, such solutions may still be
very useful to any astronomer willing to ‘clutch at straws’ while facing a problem of inter-
pretation of data (or of numerical results) involving some more or less complicated radiative
modelling.

At first glance, the radiative transfer equation (hereafter RTE) appears as a deceptively
simple first order ordinary differential equation. This is indeed the case when the so-called
source function is already known, and the process of deriving the radiation field from a
known source function is refered to as the formal solution. However, in the more general case,
the RTE is integro-differential, because the source function depends on integral terms
involving the radiation field itself. The general problem of defining self-consistently the
radiation field i.e., the specific intensity and its first moments, together with the detailed
excitation and ionization states of an atmosphere (and therefore the opacity, as well as the
spatial variations of the source function), considering the highly nonlinear light–matter
interactions which usually take place in astrophysical plasmas is definitely, and still, a (very)
difficult problem (see e.g., Rutily and Chevallier 2006).

A considerable simplification of the problem is brought by the assumption of considering
that the astrophysical plasma permeatted by radiation is in the physical conditions of the so-
called local thermodynamic equilibrium (hereafter LTE). In such a case,velocity distributions
of particles follow a Maxwell–Boltzmann distribution, excitation and ionization stages of every
atom (or molecule) constituting the plasma follow Boltzmann (for excitation equilibrium) and
Saha (for ionization equilibrium) statistics, and the self–consistent source functions are,
accordingly, characterized locally by Planck functions (see e.g., Chandrasekhar 1960). More
insight about the assumptions underlying LTE—and therefore how departures from LTE can
take place in a stellar atmosphere—can be found in the monographs of Hubeny and Mihalas
(2014) and Oxenius (1986). One should also realize that realistic radiative modelling, even
assuming LTE, is such complex already that it actually requires numerical modelling. But even
though LTE may be suitable for several astrophysical ‘objects’ (e.g., stellar photospheres),
departures from LTE should always be considered as the most general situation. These effects
have indeed been identified and studied as early as in the late 1960s, with the advent of
‘numerical radiation transfer’ (see e.g., Cuny 1967, Auer and Mihalas 1969a, 1969b). However
a few analytical solutions to the non-LTE radiation transfer problem may be derived and used
for the sake of validating any numerical approach to the problem.
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Excluding probabilistic methods such as Monte-Carlo (see e.g., Auer 1968, Bernes 1979,
Whitney 2011 for a recent review), we may consider that solutions of the non-LTE radiation
transfer equation fall into two main classes being either difference equation methods (e.g.,
Auer and Mihalas 1969a) or stationary6 iterative methods (e.g., Olson et al 1986 and
references therein). Hereafter we shall focus on iterative methods, from the so-called
Λ-iteration (or Picard) method to the Jacobi-like approximate or accelerated Λ-iteration (also
known as ALI) method and, finally, the more recent and much less popular still Gauss–Seidel
(GS) and successive over-relaxation (SOR) schemes (Trujillo Bueno and Fabiani
Bendicho 1995).

The treatment of the RTE thus appears to be also a good introduction to numerical
techniques, including the use of the moments of a function, in physical sciences.

We first remind basic equations driving the non–LTE (unpolarized) radiation transfer
problem in a static and 1D plane-parallel geometry. We shall also restrict ourselves to the
special case of monochromatic scattering. Then we shall be able to derive an analytical
solution of the NLTE radiation problem. This solution shall therefore be used for testing
several iterative methods, including the very popular ALI. Finally, we shall describe a new
on-line tool designed for educational purposes. It is located at http://rttools.irap.
omp.eu/, and the associated Python software is also available from us.

2. Formal solution of the radiation transfer equation

The derivation of the RTE in a semi-infinite, plane-parallel, static, and 1D geometry can be
found in several classic textbooks (Hubeny and Mihalas 2014, or in the e-book of
Rutten 2003).

The source function is defined as h c=n n nS i.e., the ratio bewteen monochromatic
emissivity and the extinction or absorption coefficient. The optical depth is defined as
t c= -n n zd d , where m q= cos( ) and m=z sd d , assuming that


z points in the opposite

Figure 1. Geometry of the 1D plane-parallel radiative transfer problem. A ray emerges
from a semi-infinite atmosphere with angle θ versus the normal to the surface


z . The

direction cosine is usually called μ. Along the ray, we use the spatial coordinate s.

6 Non-stationary methods have therefore recently been implemented (e.g., Paletou and Anterrieu 2009, Lambert
et al 2015).
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direction of gravity and that the direction cosine μ defines the orientation of a ray versus the z-
axis—see figure 1. Then RTE comes into its more familiar form:

m
t

= -n

n
n n

I
I S

d

d
, 1( )

where nI and tn also depend on μ. This basic RTE is the one which appears in most lectures
notes and text books introducing radiation transfer to astrophysicists. We shall also assume
that the source function is isotropic i.e., angle-independent.

The so-called ‘formal solution’ is the general solution of this equation for a known source
function. In such as case, the solution can be easily derived as:

òt t t t m= +n n
t t m

t

t
n n

t t m
n

- - - -nI I Se e d . 21 2 2 1

1

2
1 ( )( ) ( ) ( ) ( )( ) ( )

We shall see hereafter how this formal solution is used together with iterative methods
we are particularly interested in. Note also that, when t  01 and t  +¥2 in equation (2),
the formal solution is the Laplace transform of the source function.

2.1. The Eddington approximation

It is usual and convenient, for analytical radiation transfer, to define the three successive
(angular) moments of the specific intensity, or Eddington moments:

ò m m=n n
-

+
J I

1

2
d , 3

1

1
( ) ( )

ò m m m=n n
-

+
H I

1

2
d , 4

1

1
( ) ( )

ò m m m=n n
-

+
K I

1

2
d , 5

1

1
2( ) ( )

where J is the mean intensity, H the Eddington flux (which relates to the astrophysical flux
usually observed for spatially unresolved objects such as most stars other than the Sun), and K
which is related to the radiation pressure (see e.g., Hubeny and Mihalas 2014).

In a similar fashion, successive moments of the RTE can be easily derived. It leads,
respectively for Eddington factors nH and nK to

t
= -n

n
n n

H
J S

d

d
, 6( )

and

t
=n

n
n

K
H

d

d
. 7( )

Then, considering the state of the radiation field at great depth in a stellar atmosphere
when it can be safely considered also as isotropic, one can establish the so-called Eddington
approximation, =n nJ K3 (Rutten 2003, Hubeny and Mihalas 2014).

Although valid only in the above-mentioned conditions, it is common in analytical
radiation transfer to consider that the Eddington approximation remains valid throughout the
whole atmosphere of a star, even though the anisotropy of the radiation field increases while
we move towards its most external layers.
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2.2. Λ-operator

It is usual in the field of astrophysical radiation transfer to write the formal solution of RTE as

t t= LnI S , 8( ) [ ( )] ( )

where the operator Λ represents the operation of deriving the specific intensity from known
opacity and source function spatial distributions. It is also, in other terms, an integration
operator of the known source function weighted by the exponential kernel t-e .t( )

Should we ignore the frequency dependence of the radiation field, also known as the
‘grey case’, and include the angular integration leading from specific intensity to the mean
intensity (i.e., a physical quantity proportional to the more generally observed astrophysical
flux), one would rather write the formal solution as:

t t= LJ S . 9( ) [ ( )] ( )

For all computations presented hereafter, as well as for the tools we distribute, this
process is done using the Python module formal which computes the formal solution using
the so-called short characteristics (SCs) method (Olson and Kunasz 1987, Auer and
Paletou 1994).

3. An analytical solution to a NLTE radiation problem

An analytical solution to the problem of non-LTE radiative transfer can be derived with the
following assumptions. First, we shall consider the case of monochromatic or coherent
scattering. We shall also consider a source function that contains a thermal emission com-
ponent eB and a coherent isotropic scattering term e- J1 ,( ) that is

e e= - +S J B1 . 10( ) ( )
In the frame of the two-level atom model, ε is also called the collisional destruction
probability factor (it may also be related to a so-called albedo, with e= -a 1 though).

Assuming that the Eddington approximation =J K3 is valid at all depths in the
atmosphere, we get easily after forming the second derivative of K that

t
= -

J
J S

d

d
3 . 11

2

2
( ) ( )

For an isothermal atmosphere of constant B with τ and using the expression of the source
function introduced at equation (10), the latter expression turns into

t
e

-
= -

J B
J B

d

d
3 , 12

2

2

( ) ( ) ( )

whose solution is such that a- = t e-J B e .3( )
Finally, using the boudary condition at the surface =J H0 3 0( ) ( ) derived by Krook

(1955), one can establish that

a
e

= -
+

B

1
, 13( )

which leads to the Eddington solution of the non–LTE radiation transfer problem:

e= - - t e-S B 1 1 e . 14Edd.
3( ) ( )

It is important to identify two critical values associated with this solution. First is the
surface value, tSEdd. ( ) for t  0, of the source function given by eB. Any numerical
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solution have to be tested versus this limit value, and with some accuracy. Second is the
typical depth at which S BEdd. which is often called the thermalization depth. It scales as

e1 for the monochromatic scattering case we consider here. Again this typical length
should be identified with accuracy from any numerical solution to the non-LTE problem.

We conclude this section emphasizing the fact that the Eddington solution we have
established (for a semi-infinite atmosphere) is the true solution of an approximate radiation
transfer problem. The main approximation used here is on the angular dependence of the
specific intensity. While the resolution of the full problem would imply to use an infinite
number of directions, we downsized it to a single point angular quadrature (see also e.g., the
discussion provided in section 5 of Chevallier et al 2003).

4. Numerical solutions

We shall consider hereafter monochromatic (or grey) radiation transfer, so we can drop any
frequency dependance of the Eddington factors in the remainder of this article. Boundary
conditions are also assumed to be monochromatic.

The Eddington approximation is also compatible with the so-called ‘two-stream
approximation’. In that case, we adopt also a simplified angular quadrature using
m = 1 3 (i.e., the Van Vleck angle). Beyond astrophysics, this approximation is also
common for global circulation or weather forecasting models developed in (terrestrial)
atmospheric sciences (J-P Chaboureau, private communication). Note again that a proper
comparison between numerical solutions and the (analytic) Eddington solution requires the
use of a single point angular quadrature.

Our formal solver uses SCs using monotonic parabolic interpolation, as originally
described in Auer and Paletou (1994—see also Olson and Kunasz 1987, Kunasz and
Auer 1989, Paletou and Léger 2007)7. Hereafter we only remind the essential principles of
SC, and encourage the reader to consult the existing scientific literature, for details. The
numerical implementation of SCs rely on the following principles. SCs means that the formal
solution across the whole atmosphere will be carried-out depth after depth, from one
boundary surface to the other one, and back-and-forth i.e., for μ negative first then for μ
positive (note that this order is indifferent, but the separation between positive and negative
direction cosines is very important, and shall prove very useful for the case of GS iterations).
In order to perform at each spatial depth the formal solution expressed by equation (2), we
shall first assume that the source function is quadratic in the optical depth. This assumption
allows to derive an analytical expression of the integral term on the source function spatial
distribution. Then it can easily be shown that, for a current position k the integral in
equation (2) will only involve quantities known at this very position, and at the ‘upwind’ or

-k 1 ,( ) and ‘downwind’ or +k 1( ) positions. Finally, at each depth the current value of the
specific intensity (for a given direction cosine) will be given by

= + Y + Y + Yt
-

-DI I S S Se , 15k k u u d d1 0 0u ( )

where the Ψʼs are analytical functions of the optical depths tD u and tD d i.e., between the
local (0), and the upwind (u) and downwind (d) spatial positions.

For all cases discussed hereafter, we use boundary conditions more usually used for
‘semi-infinite’ atmospheres. There is no radiation falling (m < 0) onto the top surface of the

7 It is important to note that the original article contains typo errors of coefficients in the analytical expansion of the
source function integration. They have been explicitely written in a correct form in Paletou and Léger (2007).
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atmosphere, and the bottom and upward (m > 0) boundary condition is that the specific
intensity equals the Planck function (set to one hereafter).

4.1. Λ-iteration

The so-called Λ-iteration (LI) is equivalent to a Picard iterative scheme (itself being a fixed-
point iterative scheme for ODEs).

Let S† be the spatial distribution of the source function across the atmosphere from (the
initial value or) the previous iteration step. Λ-iterating consists in successively computing

= L⎡⎣ ⎤⎦J S , 16( )†

then e e= - +S J B1new ( )( ) and so on, until convergence.
Unfortunately, this poor numerical scheme is still in use although it is well-known that it

is ‘pseudo-convergent’ (see e.g., Olson et al 1986, Hubeny and Mihalas 2014). This is well
demonstated by figure 2 where we displayed (a) the successive iterates of the LI scheme
together with the target analytical solution of Eddington and, (b) the respective relative
correction, from an iteration to another, Re and the so-called ‘true error’ Te, which is the
relative error versus the analytical Eddington solution.

Following the definitions found in the original papers of Auer et al (1994) and Trujillo
Bueno and Fabiani Bendicho (1995), these two latter quantities are respectively

= - -R S S Smax , 17e
n n n1( ) ( )( ) ( ) ( )

= -T S S Smax . 18e
n

Edd. Edd.( ) ( )( )

Both are indeed useful to demonstrate the pseudo-convergent nature and the failure of LI.
Indeed on figure 2(b) once can notice the constant drop of the relative correction Re giving the
misleading impression that pushing the iteration number will finally reach the solution, while
the true error Te indicates that the pseudo-solution will remain far away from the reference
solution of Eddington.

Figure 2. Λ-iteration for a semi-infinite slab of total optical thickness 104 with 5 points
per decade, and an atmosphere such as e = -10 .4 The left panel shows the successive
runs of the source function, and the pseudo-convergent nature of the numerical scheme.
The analytical solution is represented by the dotted curve. The right panel displays (i)
the maximum relative correction, from an iteration to another (dashed line), and (ii) the
true error i.e., the relative error versus the analytical solution (note that we always have

>T Re e after a few iterations).
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Note also that, in all figures >T Re e after the very first iterative steps, if not at the onset
of the iterative process.

4.2. ALI: accelerated/approximate Λ-iteration

The ALI method is basically an operator splitting method. Let us write therefore:

* dL = L + L. 19( )

At this point several choices for an approximate operator *L are possible. However, in our
study we shall only consider the most efficient version of ALI which is just a Jacobi-type
method. In such a case, *L should be the exact diagonal of the full operator Λ. The study of
reference concerning this very method is the seminal article of Olson et al (1986). In practice,
the diagonal operator is very easily determined, as described in Auer and Paletou (1994).

Now let us write the succession of iterates of the source function as d= +S S S,† where
S† means the source function known at the current iterative step. Now using the definition of
the Λ-operator = LJ S[ ] we can write the expression of the source function correction
explicitly:

*d e e e= - - L - L + --⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦S S B S1 1 1 . 201{ }( ) ( ) ( )† †

When *L is the diagonal of the full operator, at each depth in the atmosphere the increment of
source function is just obtained from a scalar divide, which make the ALI method both
accurate and fast.

Unlike the LI iteration, it can be rigorously shown that the ALI iterative scheme definitely
converges to the solution of the problem, as demonstrated in figure 3(a). However, the
accuracy of the numerical solution depends on the spatial sampling of the atmosphere. It can
be measured by the true error, Te, which reaches a plateau at ~ -10 ,2 as can be seen in
figure 3(b).

Figure 3. Same as figure (2) but for Accelerated Λ-iteration. Within the same number of
iterations (150) the analytical reference solution is reached, unlike with LI. The true
error reaches a constant level around 0.01, also indicating that there is no need to iterate
further than ∼140 iterations, while the relative correction continues to decrease.
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4.3. GS and SOR iterations

Experimenting both GS and SOR are logical steps after having experienced the Jacobi-type
ALI methods. Although published twenty years ago now, by Trujillo Bueno and Fabiani
Bendicho (1995), it is not yet of common practice, unlike ALI.

The GS iterative method consists essentially in updating the current source function value
once the full angular integration of the specific intensity can be performed—because all the
necessary quantities yet are available, and before the formal solver will be moving to the next
depth point. This is made relatively easy within the SCs methods which separates sweping the
atmosphere first for m < 0 and second for the remainder m > 0 directions (or vice versa, the
important point being an explicit distinction between positive and negative direction cosines).
This is sketched in figure 4 which should be read from left to right. Assume that all depths
have been covered along SCs of m < 0, so that we know all specific intensities and mean
intensities J for these direction cosines, up to the bottom boundary layer N. The next task is
to complete the angular integration for the upward direction cosine(s). Starting at the bottom
boundary, the ‘upwind’ specific intensity is known since it is provided by the external
boundary condition. Therefore, at layer N we can easily compute J . This knowledge makes it
possible to update the local source function before switching to the next inner layer at

-N 1 .( ) This is the main ‘trick’ for doing GS iterations within the SC method. It requires
however modifications of the more traditional formal solver used for ALI (provided by us as
the formalGS module). Indeed, when moving to the next layer for m > 0 at -N 1 ,( ) we
shall advance the specific intensity according to equation (15) but now using a mixture of the
just updated Su

new( ) and of S d0,
old( ) i.e., of the not yet modified values of the source function at

the local and at the downwind position -N 2 .( ) The process is then repeated up to the top
boundary surface of the atmosphere.

The numerical implementation of the method was described in every detail in the original
article of Trujillo Bueno and Fabiani Bendicho (1995). We therefore strongly encourage the
reader to study this article with great care.

Figure 4. Illustration in support of the basic principle of the implementation of Gauss–
Seidel iterations within the short characteristics method.
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Figure 5 shows the significative gain on the convergence rate provided by GS. For 1D
problems, it is by far superior to the small additional computations induced by the indis-
pensable modifications of the classical SCs formal solver.

Finally the SOR scheme is built on the same strategy adopted for GS although the new
source function increment d wd=S S ,SOR GS( ) ( ) with ω chosen between 1 and 2. It can be shown
that the optimal scheme is obtained for w ~ 1.5 (see Trujillo Bueno and Fabiani Bend-
icho 1995) more insight about the SOR method can be found in Young (1971).

5. NLTE radiation transfer on-line

We have implemented a dedicated web-service which allows on-line numerical experiments
with the numerical methods we just presented. It is located at http://rttools.irap.
omp.eu/, and maintained by OMP-IRAP (Toulouse, France). In addition, a git repository is
about to be installed, in order to distribute the original Python modules we developed and
used for the web-service.

5.1. Description

Several ‘buttons’ may be independently activated. The first choice is to be made among
methods i.e., Λ-iteration (LI), ALI, and GS or SOR (GS). Concerning the latter choice, the
distinction between both schemes will be controled by the ω (omega) parameter. Once the
method have be selected, the user will have to provide a value for ε (eps) with format 10−p

where p is an integer, the total optical thickness of the atmosphere tmax (taumax), using a
format 10k, and the number of points per decade (npdec) used for setting the spatial grid for
the computations. Finally, the number of iterations (niter) to be performed is required.

The output consists in two graphics. The first one provides the history of the source
function (initialized with ºS B) for the number of iterations required, with the corresponding

Figure 5. True error and relative correction (dashed line) for the same parameters than
in previous figures, but using the GS iterative scheme. The truncation error seen by the
plateau at ~ -T 10e

2 is reached in less than 30 iterations now.
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Eddington solution versus optical depth. The second plot displays both true error and relative
correction (from an iteration to another) versus the number of iterations.

5.2. Experiments

As a preamble to this part, we remind here that comparison with the analytical solution of
Eddington makes sense only for the case of ‘effectively thick’ slabs, that is such that
t e 1 ,max for the case of monochromatic scattering we only consider hereafter.

A first and indispensable experiment is to realize the failure of the Λ-iteration. The
‘pseudo-convergence’ of this method can be noticed by the rapid and continuous fall of the
relative correction Re, while the ‘solution’ at which the process is converging may remain
very far from the Eddington solution, as indicated by the ‘true’ error Te. Further experiments
pushing the number of iterations for the same set-up should be done and analysed.

Using the very same set of parameters, the next step is to experiment the benefit of the
diagonal operator ALI method. The latter should quickly reach the Eddington solution with
good accuracy, unlike LI. Other experiments will allow to check the so-called e -law for the
surface value of S/B, as well as to identify the ‘thermalization depth’ e1 .

However, even ALI may work at limited accuracy. A relevant experiment is to iterate the
method with a given set of parameters up to reaching a plateau for Te. The latter value gives
an indication of the truncation error of the method, due to the spatial discretization of the
numerical method. All other parameters remaining equals, one should then experiment the
effects of only modifying the sampling of the slab, by changing the number of points per
decade parameter. Changes in the limit value of Te, together with the rate of convergence
should be investigated. Note that a detailed study on the accuracy of the ALI method was
published by Chevallier et al (2003).

Finally, we propose to go beyond the ALI-Jacobi method with the GS and SOR. Its
implementation requires several touchy modifications in the original SCs formal solver which
require special attention. We found them pretty well documented in the original article, and
the interested user will get to it by a careful inspection of the source code that we also deliver
with our web-service. GS and SOR differ only by the choice of the relaxation parameter ω. It
should be set to w = 1 for performing GS iterations, although it should be picked between 1
and 2 for experimenting SOR iterations. It is a good exercice to test various values of ω,
seeking for an optimal scheme.

A more insider study, requiring to use directly the Python code we make available, would
be to test the so-called smoothing capability of GS/SOR methods which plays a crucial role
in multi-grid methods (see e.g., Auer et al 1994).

6. Conclusion

We made available a tool very suitable to any astrophysics Master programme, or for any
astronomer or physicist willing to start an initiation to state-of-the-art numerical radiation
transfer.

It is quite straightforward to upgrade the simple angular quadrature we used for that
study. It would be also possible to implement, from our Python formal solver, the compu-
tation of a more realistic scattering integral, by integrating an explicitely ν-dependent mean
intensity nJ weighted by an a priori known absorption profile (Gaussian/Doppler or Voigt).

Possible evolutions may be, to develop a specific formal solver for the 1D spherical
problem (see e.g., Auer 1894), or to propose a simple multi-level atom version following the
so-called multilevel-ALI method originally developped by Rybicki and Hummer (1991, see
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also Paletou and Léger 2007). Comparisons with (non-stationary) conjugate gradient type
method could also be set-up (see e.g., Paletou and Anterrieu 2009).
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