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ABSTRACT

Context. New high-resolution spectropolarimetric observations of solar prominences require improved radiative modelling capabili-
ties in order to take into account both multi-dimensional – at least 2D – geometry and complex atomic models.
Aims. This makes necessary the use of very fast numerical schemes for the resolution of 2D non-LTE radiative transfer problems
considering freestanding and illuminated slabs.
Methods. The implementation of Gauss-Seidel and successive over-relaxation iterative schemes in 2D, together with a multi-grid
algorithm, is thoroughly described in the frame of the short characteristics method for the computation of the formal solution of the
radiative transfer equation in cartesian geometry.
Results. We propose a new test for multidimensional radiative transfer codes and we also provide original benchmark results for
simple 2D multilevel atom cases which should be helpful for the further development of such radiative transfer codes, in general.
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1. Introduction

Efficient iterative schemes have been introduced in the field of
two-dimensional (2D) non-LTE numerical radiative transfer dur-
ing the last, say, fifteen years. These developments most of-
ten rely on the combination of the short characteristics (SC)
method for the so-called formal solution of the radiative trans-
fer equation (in cartesian geometry see e.g., Kunasz & Auer
1988; Auer & Paletou 1994 and in various other geometries;
van Noort et al. 2002) and efficient iterative schemes such as
Gauss-Seidel and successive over-relaxation (GS/SOR) iterative
processes (Trujillo Bueno & Fabiani Bendicho 1995; Paletou &
Léger 2007) together with multi-grid (MG) methods (Auer et al.
1994; Fabiani Bendicho et al. 1997).

Hereafter, we are interested in a more realistic modelling of
isolated and illuminated structure, such as prominences hang-
ing in the solar corona (see e.g., Paletou 1995, 1996). Our
future work will place emphasis on the synthesis of the H
and He spectra. Indeed, the most recent modelling efforts con-
cerning the synthesis of the H and He spectrum in promi-
nences was performed using either mono-dimensional (1D)
slabs (Labrosse & Gouttebroze 2001, 2004), or using 2D carte-
sian slabs in magnetohydrostatic equilibrium and the Multilevel
Accelerated Lambda Iteration (MALI) technique for the solu-
tion of the non-LTE transfer problem (Heinzel & Anzer 2001,
2005). Concerning the spectrum of H, Gouttebroze (2006) also
presented promising new results using 2D cylindrical models of
coronal loops.

Our primary aim is thus to improve diagnostics based, in
particular, on He i lines by treating a detailed He-atomic model

including the atomic fine structure together with 2D non-LTE
radiative transfer. We are motivated here by new observations of
solar prominences (see e.g., Paletou et al. 2001; Merenda et al.
2006), which also triggered some revisions of inverting tools
(López Ariste & Casini 2002). And up to now, the later diag-
nostic tools are limited by the assumption that the relevant (ob-
served) He spectral lines are optically thin; it is, however, easy to
check from high spectral resolution observations that a spectral
line like D3 of He i in the visible, for instance, is not always opti-
cally thin, even in quiescent prominences (Landi Degl’Innocenti
1982; López Ariste & Casini 2002). Furthermore, the expected
optical thicknesses of 1 to 10 say, in such structures let us fore-
cast the presence of significant geometrical effects on the mech-
anism of the formation of this spectral line, like the ones already
put in evidence on Hα by Paletou (1997).

The combination of 2D geometry with a very detailed
atomic model for He obviously requires a more efficient ra-
diative transfer code as compared to the one developed from
the MALI method by Paletou (1995). And clearly enough,
the planned improvement of the radiative modelling, including
multidimensional geometry, together with multi-level, realistic
atomic models have to rely on those new and fast radiative trans-
fer methods which are based on GS/SOR with multigrid numer-
ical schemes.

GS/SOR methods, best implemented within a short charac-
teristics formal solver, have been described in every detail by
Trujillo Bueno & Fabiani Bendicho (1995), but only in the frame
of the two-level atom case and in 1D geometry. In another
article, Fabiani Bendicho et al. (1997) nicely described the
implementation of non-linear multi-grid techniques, using an
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efficient iterative method such as a GS/SOR scheme. However,
they just did not describe the implementation of, 1D or multi-
dimensional, multilevel GS/SOR schemes using the SC method.
Besides, Paletou & Léger (2007) finally made explicit the imple-
mentation of GS/SOR iterative schemes in the multi-level atom
case, restricted though to a 1D plane-parallel geometry.

The present article aims therefore at “filling the gap” by pro-
viding all the elements required for a successful implementa-
tion of a GS/SOR iterative scheme in a 2D cartesian geometry.
In order to do so, we adopt the line of detailing the method in
the frame of the 2-level atom given that our detailed descrip-
tion of the multilevel strategy published elsewhere (Paletou &
Léger 2007) does not need to be commented any further for the
jump from 1D to 2D. Therefore, we also provide hereafter vari-
ous benchmark results for the 2D-multilevel atom case, still un-
published to date, using simple atomic models taken from Avrett
(1968; see also Paletou & Léger 2007). Moreover, an original
comparison between 2D numerical results and independent an-
alytical solutions is made.

We shall recall in Sect. 2 the basic principles of ALI and
GS/SOR iterative schemes in the frame of a two-level atom
model and in 1D geometry. Then in Sect. 3 we shall describe, in
detail, how the GS/SOR numerical method can be implemented
for the case of 2D slabs in cartesian geometry, therefore up-
grading the 2D short characteristic method initially published
by Auer & Paletou (1994). A new test for numerical radiation
transfer codes is briefly presented in Sect. 4. Then we shall fi-
nally present, in Sect. 5, benchmark results for simplified mul-
tilevel atomic models in 2D geometry and some illustrative ex-
amples clearly demonstrating in which conditions geometrical
effects should be seriously considered.

2. Gauss-Seidel and SOR iterative schemes basics

In the two-level atom case, the non-LTE line source function,
assuming complete redistribution in frequency, is usually writ-
ten as

S (τ) = (1 − ε)J̄(τ) + S ∗(τ), (1)

where τ is the optical depth, S ∗ is the thermal source function,
and ε is the collisional destruction probability; unless explicitly
mentioned, S ∗ = εB, where B is the Planck function. J̄ is the
usual mean intensity defined as

J̄ =
∮

dΩ
4π

∫ ∞

0
φνIνΩdν, (2)

where the optical depth dependence has been omitted for the
sake of simplicity; as usual, IνΩ is the specific intensity and φν is
the line absorption profile. Usually again, the mean intensity is
written as the formal solution of the radiative transfer equation
i.e.,

J̄ = Λ[S ]. (3)

Following the Jacobi-type iterative scheme introduced in numer-
ical transfer by Olson et al. (1986), we shall consider a splitting
operator Λ∗ equal to the exact diagonal of the true operator Λ.
Now introducing the perturbations{
Λ = Λ∗ + (Λ − Λ∗)
S (new) = S (old) + δS (4)

in Eq. (1), we are led to an iterative scheme such that

S (new) = [1 − (1 − ε)Λ∗]−1{(1 − ε)(Λ − Λ∗)S (old) + εB}. (5)

Fig. 1. Schematic view of the short characteristics method for the com-
putation of J̄ in a 1D grid of N points in the case of a ALI iterative
scheme. During the first (downward here) pass the angular integration
as in Eq. (2) is made over half an hemisphere; it is completed during
the 2nd (upward) pass, allowing for the source function update accord-
ing to Eq. (1).

Running the later scheme to convergence is better known in nu-
merical radiative transfer as the “ALI method”. As schematized
in Fig. 1, using the short characteristics method in 1D geometry
(Olson & Kunasz 1987; Kunasz & Auer 1988), the formal solu-
tion is obtained by sweeping the grid say, first in directions −Ω
(µ < 0) i.e., from the surface down to the bottom of the atmo-
sphere, and then in the opposite, upward directions +Ω (µ > 0)
moving from the bottom of the atmosphere up to its surface. The
specific intensity IνΩ is then advanced step by step during each
pass, partially integrated over angles and frequencies during the
downward pass, while during the second (upward) pass, comple-
tion of the angular integration allows for the full determination
of the mean intensity J̄k at each depth τk of the 1D grid. Finally,
we update the source function

S (new)
k = S (old)

k + ∆S k, (6)

on the basis of increments such that

∆S k =
(1 − ε)J̄(old)

k + εBk − S (old)
k

1 − (1 − ε)Λkk
, (7)

where Λkk is a scalar equal to the diagonal element of the full
operator Λ at such a depth in the atmosphere and where super-
scripts (old) denote quantities already known from the previous
iterative stage.

For a Gauss-Seidel iterative scheme, the sweeping of the at-
mosphere is identical, but as soon as the mean intensity J̄k is
fully computed at depth-point k in the atmosphere during the
upward pass, the local source function is updated immediately
i.e., before completion of the 2nd pass, using increments which
have now turned into

∆S (GS)
k =

(1 − ε)J̄(old and new)
k + εBk − S (old)

k

1 − (1 − ε)Λkk
, (8)

where the quantity J̄(old and new)
k means that at the spatial point k

the mean intensity has to be calculated via a formal solution
of the transfer equation using the “new” source function val-
ues S (new)

j already obtained at points j = ND, . . . , (k + 1) and the

“old” source function values S (old)
j at points j = k, (k− 1), . . . , 1.
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Fig. 2. The 2D grid is swept four times: first pass in directions↘ defined
in panel 1, second pass in directions↖ defined in panel 2, third pass in
directions↗ defined in panel 3 and fourth pass in directions↙ defined
in panel 4. Sweeping must be done away from the boundaries so that
upwind intensities – see Eq. (11) – are always known.

Finally, as a next step SOR iterations can simply be imple-
mented using

∆S (SOR)
k = ω∆S (GS)

k , (9)

where ω is an overrelaxation parameter such that 1 < ω < 2.
For two-level atom models in 1D, this method was originally
proposed by Trujillo Bueno & Fabiani Bendicho (1995).

3. The 2D-cartesian geometry case

Hereafter, we shall describe in detail how the GS/SOR numeri-
cal method can be implemented for the case of 2D freestanding
slabs modeled in cartesian geometry.

3.1. SC in 2D: an overview

We shall initially follow and therefore upgrade the formal solver
of reference proposed originally by Kunasz & Auer (1988) and
modified by Auer & Paletou (1994).

Using SC in 2D geometry, the formal solution is obtained by
sweeping the grid four times, as schematized in Fig. 2, say first
increasing y and z i.e., along directions Ω1 (note that z = 0 is
the surface of the atmosphere), second decreasing y and z along
directions Ω2, third increasing y and decreasing z along direc-
tions Ω3, and finally decreasing y and increasing z along direc-
tions Ω4. The specific intensity IνΩ is therefore advanced step by
step during each pass, partially integrated over angles, quadrant
after quadrant, and over frequencies during the first three passes
while, during the fourth pass, the mean intensity J̄ can be fully
computed, therefore completing the numerical evaluation of the
formal solution

J̄(i, j) = Λ(i, j)[S ]. (10)

Except at the boundary surfaces where the incident radiation is
known a priori, along each direction the specific intensity at the
inner grid points is advanced depth after depth. As displayed
in Fig. 3, the short characteristic starts at grid point o (i, j) and
extends in the “upwind” and “downwind” directions until it hits
one of the cell boundaries either at point u or at point d that
is, not grid points in general. The specific intensity is therefore
computed, according to Kunasz & Auer (1988), as

Io = Iue−∆τu + ΨuS u + ΨoS o + ΨdS d, (11)

where the first part of the right-hand side of this expression cor-
responds to the part transmitted from the “upwind” point u down

Fig. 3. Example of a short characteristic across a 2D cartesian grid at
depth point o (i, j) for a ray propagating along directions ↘ defined
in panel 1 of Fig. 2: three points a, b and c are used for monotonic
parabolic interpolation in z, in order to evaluate quantities at point u
following Auer & Paletou (1994).

to the current point o, and the last three terms result from the
analytic integration of

I =
∫ ∆τu

0
S (τ)e−τdτ (12)

along the short characteristic going from u to o; expressions for
the Ψ’s can be found in Paletou & Léger (2007).

As shown in Fig. 3, in 2D geometry, Iu, S u, and S d are not
grid points, and they must be evaluated by interpolation on the
basis of a set of grid points. In order to do so, one has to first de-
termine on which axis, y or z, the upwind and downwind points
shall lie. We introduce cy (respectively cz) the cosine between
the direction into which the photon is moving and the y-axis (re-
spectively the z-axis), ∆y the y length of the cell containing both
u and o grid points, and ∆z its length in z. If

∆y

cy
<
∆z
cz

the ray hits the y-axis and ∆τu = ∆z/cz.
Following Auer & Paletou (1994), Iu and S u are determined

by interpolation along the upwind grid-line passing through
points a and b. To perform a parabolic interpolation, we shall
therefore use three grid points a, b, and c as displayed in Fig. 3,
where “quantities” have already been updated; along z-lines, in-
terpolation weights are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωa =
(zb − z)(zc − z)

(zb − za)(zc − za)

ωb =
(za − z)(zc − z)

(za − zb)(zc − zb)

ωc =
(za − z)(zb − z)

(za − zc)(zb − zc)

(13)

and similar weights should be used for interpolation in y, using
grid points (i− 1, j), (i− 1, j− 1) and (i− 1, j− 2) though. Then,
we are able to calculate the upwind specific intensity as

Iu = ωaIa + ωbIb + ωcIc (14)

where specific intensity values have already been computed
at grid points a, b, and c. This is guaranteed by sweeping
the grid away from one of the upwind boundaries. Note also
that S u and S d are also evaluated from (S a, S b, S c) using similar
expressions.
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Fig. 4. Let i be the index along the y-axis and j along the z-axis; we
consider the specific intensity evaluation at any inner grid point (i, j)
during the fourth pass in the 2D grid, corresponding to the directionsΩ4

defined in Fig. 2. At this stage, all “new” grid points have already been
swept, so that source functions at these points have been updated too.

For the sake of accuracy and in order to avoid the genera-
tion of spurious upwind intensities by high-order interpolation,
one must use a monotonic interpolation i.e., set Iu (and Id) equal
to the minimum or maximum of Ia and Ib if the parabolic in-
terpolant lies outside the interval [min(Ia, Ib), max(Ia, Ib)], as
proposed by Auer & Paletou (1994).

3.2. Implementation of GS/SOR in 2D

Assume that one has already swept the grid three times as de-
scribed in Fig. 2. By analogy with the GS/SOR numerical strat-
egy in 1D geometry, we now update the source function at each
grid point during the fourth pass of the SC-2D scheme according
to the correction given in Eq. (8) and before passing to the next
depth point. It is a quite straightforward task at the boundary sur-
faces since the incident radiation field is known a priori from the
(given) external conditions of illumination.

We shall hereafter describe what has to be done at the inner
grid points. Figure 4 describes the situation once arriving at (i, j)
after the 2D grid was swept thrice. Using superscripts defined in
Fig. 2, the current specific intensity comes from

I↙(i, j) = I↙u e−∆τ
↙
u + Ψ↙u S↙(new)

u + Ψ↙o S↙(old)
o + Ψ

↙
d S↙(old)

d , (15)

where one must understand quantities with superscripts (new)
such as resulting from interpolations along upwind grid lines,
using source functions that were obtained during the preceding
steps. Indeed, using an expression similar to the one in Eq. (14)
for an interpolation along the z-axis, we would have

S↙(new)
u = ω↙a,(i, j)S

(new)
(i+1, j) + ω

↙
b,(i, j)S

(new)
(i+1, j−1) + ω

↙
c,(i, j)S

(new)
(i+1, j−2). (16)

Before integrating over all frequencies and over the angles corre-
sponding to the Ω4 directions in order to obtain the partial mean
intensity

J̄↙ =
∫
Ω4

dΩ
4π

∫
ν

φνIνΩdν, (17)

we have to correct the specific intensity calculated during
the first three passes for consistency with the source function

updates. More specifically, the term I↗(i, j) was calculated during

the third pass as1

I↗(i, j) = I↗u e−∆τ
↗
u + Ψ↗u S↗(old)

u + Ψ↗o S↗(old)
o + Ψ

↗
d S↗(OLD)

d (18)

using S↗(OLD)
d instead of the new value S↗(new)

d obtained from
the interpolation using the updated points (i+ 1, j), (i+ 1, j− 1),
and (i + 1, j − 2) as shown in Fig. 4. Since we have the identity
S↗d = S↙u a correcting term

∆J̄↗(i, j) =
∫
Ω3

dΩ
4π

∫
ν

φν
[
S↙(new)

u,ν − S↗(old)
d,ν

]
Ψ
↗
d,νdν (19)

must therefore be added to the the total mean intensity by in-
tegrating the specific intensity correction over frequencies and
over all angles Ω3 (Fig. 2). This step is equivalent to the com-
putation of the ∆Jin

k correction mentioned by Trujillo Bueno &
Fabiani Bendicho (1995) in their Eq. (39).

The two other terms, I↘(i, j) and I↖(i, j), calculated during the first
and the second passes are also still inconsistent with the last
source function updates because they were calculated as

I↘(i, j) = I↘(OLD)
u e−∆τ

↘
u + Ψ

↘
u S↘(OLD)

u

+ Ψ
↘
o S↘(old)

o + Ψ
↘
d S↘(OLD)

d ,

(20)

and

I↖(i, j) = I↖(OLD)
u e−∆τ

↖
u + Ψ

↖
u S↖(OLD)

u

+ Ψ
↖
o S↖(old)

o + Ψ
↖
d S↖(OLD)

d ,

(21)

where we have the following identities S↘(OLD)
u = S↖(OLD)

d and

S↘(OLD)
d = S↖(OLD)

u .
These (OLD) source functions can now be calculated using

updated values. For example, the new value S↘(new)
u = S↖(new)

d
is obtained from an equation similar to Eq. (14) with an in-
terpolation along y-axis2 using S (new)

i, j−1 . Using Fig. 4, one can
see that (i, j − 1) is a “new” grid point whereas (i − 1, j − 1)
and (i − 2, j − 1) are “old” grid points i.e.,

S↘(new)
u = ω↘a,(i, j)S

(new)
(i, j−1) + ω

↘
b,(i, j)S

(old)
(i−1, j−1) + ω

↘
c,(i, j)S

(old)
(i−2, j−1). (22)

Similarly, the new value S↘(new)
d = S↖(new)

u is obtained using

an interpolation along y-axis, for instance, involving S (new)
i+1, j+1 and

S (new)
i+2, j+1 – with this time, using Fig. 4, grid points at (i + 1, j + 1)

and (i + 2, j + 1) are “new” whereas (i, j + 1) is an “old” grid
point i.e.,

S↘(new)
d = ω↘a,(i, j)S

(old)
(i, j+1) + ω

↘
b,(i, j)S

(new)
(i+1, j+1) + ω

↘
c,(i, j)S

(new)
(i+2, j+1). (23)

By analogy, old specific intensities, I↘(OLD)
u and I↖(OLD)

u , must
be updated to obtain new values calculated with interpolations
using “new” grid points.

We then have to calculate two other corrections ∆J↘(i, j)
and ∆J↖(i, j) by integrating these corrected specific intensities over

1 We use the superscript (OLD) to emphasize terms which need to be
replaced by new values according to updated points in Fig. 4 whereas
(old) terms remain unchanged.

2 For an interpolation along z-axis, there are no “new” grid points to
consider.
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frequencies and over directions Ω1 and Ω2, following an equa-
tion similar to Eq. (19). Finally we add three correcting terms
to compute the correct total mean intensity at the current grid
point (i, j):

J̄(i, j) = J̄↘(i, j) + J̄↖(i, j) + J̄↗(i, j) + J̄↙(i, j)

+ ∆J̄↗(i, j) + ∆J̄↘(i, j) + ∆J̄↖(i, j).
(24)

Then it is straightforward to update the local source func-
tion S (new)

i, j via Eq. (8).
However, before advancing to the next depth point (i, j + 1),

it is important to add the following corrections to the specific
intensities of the first three passes, due to the source function
update which has just been made at the current depth point:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆I↙(i, j) = Ψ
↙
o

[
S (new)

(i, j) − S (old)
(i, j)

]

∆I↘(i, j) = Ψ
↘
o

[
S (new)

(i, j) − S (old)
(i, j)

]

∆I↖(i, j) = Ψ
↖
o

[
S (new)

(i, j) − S (old)
(i, j)

]
.

(25)

This last stage is analogous to the correction described by
Trujillo Bueno & Fabiani Bendicho (1995) in their Eq. (40).

Finally, a two-dimensional SOR iterative scheme is built
when, at each depth-point (i, j), the source function is updated
according to

∆S (SOR)
(i, j) = ω∆S (GS)

(i, j) , (26)

where ω is computed exactly in the same way as in the 1D case.

3.3. Additional notes on the whole numerical scheme

As in the 1D case, implementing a GS/SOR solver requires prop-
erly ordering the various loops; starting from outer to inner loop
one should find: (1) the directions Ωi as shown in Fig. 2, (2) the
direction cosines in each quadrant Ωi and, finally (3) the fre-
quencies. The corrections described in Eqs. (18), (20), and (21)
require some bookkeeping of variables such as all the Ψu’s and
the Ψd’s computed during the three first passes (for the further
computation of the mean intensity).

Details about the implementation of GS/SOR for multilevel
atom models were given by Paletou & Léger (2007). The main
difference with the two-level atom case is the propagation of the
effects of the local population update: it generates for each al-
lowed transition changes in the absorption coefficients at line
center and in the line source functions.

Furthermore, we have also embedded the above-described
2D-GS/SOR scheme into a nested multigrid radiative trans-
fer method following the precise description given by
Fabiani Bendicho et al. (1997). We use three grids with a grid-
doubling strategy. On the coarsest grid (i.e., level l = 1), we it-
erate to convergence i.e., until Rc, the relative error on the level-
populations from one iteration to another is “small” using the
2D-GS/SOR scheme. For each grid l = 2, 3 where grid level
l = 3 is the finest one, we interpolate populations on grid level l
using those obtained onto grid level (l− 1) and calculate the cor-
responding absorption coefficients and source functions. We it-
erate onto grid level l using the standard multigrid method from
grid level l down to grid level l = 1 only until the following
stopping criterion is satisfied

Rc(iter, l)
λ

1 − λ <
1
8

Rc(iter = 1, l) (27)

where λ � Rc(iter, l)/Rc(iter − 1, l), as proposed by Auer et al.
(1994).

We restate here the main steps of one standard multigrid it-
eration: make one pre-smoothing iteration onto grid level l using
a pure GS iterative scheme, then a restriction down to grid level
l = 1 to compute the coarse-grid equation; solve the coarse-
grid equation onto grid level l = 1 using the 2D-SOR scheme;
make a prolongation up to grid level l to obtain a new estimate
of the populations, then one post-smoothing iteration onto grid
level l again using a pure GS iterative scheme (it is important
to note that one must make one pre- or post-smoothing itera-
tion on each grid level using a pure GS iterative scheme). We
used a cubic-centered interpolation for the prolongation and the
adjoint of a nine-point prolongation for the restriction (see e.g.,
Hackbusch 1985).

4. Validation vs. an analytical solution

There is no analytical solution for 2D non-LTE radiative trans-
fer. However, it is possible to compare 2D numerical solutions to
1D solutions for which accurate and robust numerical and ana-
lytical methods exist. In order for this comparison to be accurate,
the slab has to be sufficiently extended in the y direction i.e. “ef-
fectively” infinite.

We have used the ARTY code for the computation of refer-
ence, analytical solutions (Chevallier & Rutily 2005; see also the
Appendix) obtained using the method of the finite Laplace trans-
form. This code can indeed solve standard 1D problems with
an intrinsic accuracy better than 10−10; it has already been use-
ful testing the ALI method with a SC formal solver in 1D for the
case of a non-illuminated, homogeneous, and isotropic plane-
parallel slab with internal, homogeneous sources (Chevallier
et al. 2003).

A stringent test for our 2D code was to consider a point-
source located at the center of a non-externally illuminated and
homogeneous slab. The central source emits isotropically in
space, which in fact corresponds to a line, infinite along x, of
sources. This idealized model captures most of the difficulties
encountered when using numerical methods to solve the radia-
tive transfer equation: the scattering is not neglected – it can also
be dominant –, and the ponctual source will lead to large gradi-
ents which are difficult to handle when dealing with discretiza-
tion of the slab.

Then we computed the properties of the radiation field
emerging at the top surface of the slab (z = 0) at one frequency,
as described by the usual first three moments J, H, K of the spe-
cific intensity; more precisely, the latter were integrated in space,
along the top surface of the slab, in order to be compared to the
1D analytical solutions.

To carry out this test, we chose the difficult case of a slab
of optical thickness τ∗ = 100 in both directions, where scatter-
ing dominates the absorption adopting the value ε = 0.01. This
medium is therefore effectively thick because the thermalization
depth 
 ≈ 1/

√
3ε is much smaller than the optical thickness in

such a case. We used Carlson’s “Set A” (1963) with 10 points
per octant to describe the angular dependence of the radiation
field and only one frequency-point. The Dirac thermal source
term was modelized by a sharp, normalised 2D-Gaussian func-
tion having half-width at half-maximum 0.16 in τ. The grid is
logarithmically refined near the center of the slab in order to
accurately describe the shape of the 2D-Gaussian: the closest
points to the center are at a distance 10−4 along the axes, in or-
der to accurately describe the Gaussian shape whose numerical
integral over the space has to be the closest as possible to unity.
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Fig. 5. Relative errors between spatial averages of the angular mo-
ments J, H and K given by the 2D-SOR 2-level iterative process and
their analytical values for ε = 0.01 vs. the number of spatial points of
a square 2D grid of extension τ∗ = 100 in each direction.

The two-level 2D-SOR iterative process was iterated until
convergence of J, H, and K i.e., when the second digit of their
relative error did not show any more variation from one itera-
tion to the next. For such a case, 500 iterations are sufficient. In
Fig. 5, we demonstrate how these errors behave with the refine-
ment of the spatial quadratures; the absolute values of the refer-
ence solutions, as well as the source functions and values of the
specific intensity in the directions corresponding to the angular
quadrature chosen here are given in the Appendix.

The important result to point out here concerning this new
test is that (i) acceptable relative errors, say better than 5%, are
obtained only for very refined grids which (ii) can hardly be han-
dled using a simple Jacobi-like iterative scheme such as ALI.
This again justifies the adoption of very high rate of convergence
methods such as GS/SOR and MG. Finally, we are conducting
more comprehensive tests of this nature the results of which will
be published elsewhere.

5. Illustrative examples and benchmarks

We modeled a 2D freestanding slab irradiated from below, on
its sides, and bottom by a Planck function. The slab is homo-
geneous and static with a vertical geometrical extension zmax =
30 000 km; its horizontal extension ymax could take the respec-
tive values: 100 000, 30 000, 10 000, 5000 and 1000 km. Depth
points are logarithmically spaced away from the boundary sur-
faces and the graphical representation we adopted compresses
the central region and greatly expand the areas near the bound-
aries. We have used the “set A” of Carlson (1963) with 3 points
per octant to describe the angular dependence of the radiation
field and constant Doppler profiles. The temperature of the slab
was fixed to T = 5000 K and the gas pressure pg = 1 dyn cm−2.
Finally, we adopted the standard benchmark models for multi-
level atom problems proposed by Avrett (1968; see also Paletou
& Léger 2007) considering, in particular, its 3-level H i atomic
model.

The respective rates of convergence for the SOR and
MG-2D multilevel iterative processes are displayed in Fig. 6
where we have plotted the maximum relative change on the
level populations (i.e., the ∞-norm) from one iteration to an-
other Rc. The computation time for the MALI, GS, SOR, and
MG 2D-multilevel iterative processes are given in Table 1 for
different grid refinements. We point out that a MG scheme is
not only superior in iteration numbers and computing time, it is

Fig. 6. Rates of convergence for the SOR (solid lines) and SOR-MG
(dashed lines) 2D multilevel iterative processes. A spatial grid of
163 points per direction with zmax = 30 000 km and ymax = 5000 km;
the temperature of the atmosphere is 5000 K and the gas pressure fixed
at pg = 1 dyn cm−2. For benchmark purposes, we adopted the simplified
3-level H i atom model taken from Avrett (1968).

also important to note that the convergence error Ce, which is
defined by

Ce = max

( | n(itr) − n(∞) |
n(∞)

)
(28)

is smaller than Rc for MG. However, for methods such as MALI
or SOR a small value of Rc does not imply a small value
of Ce, which means that convergence is not necessarily achieved
(Fabiani Bendicho et al. 1997).

As shown in Fig. 7, where S (Hα) normalized to the external
illumination is plotted as a function of the vertical line-center op-
tical depth, the same variations as in 1D (solid line) are recovered
along the vertical axis of symmetry of the 2D model which has
the largest horizontal extension (i.e., 100 000 km). For smaller
geometrical slab widths (and horizontal optical thicknesses), lat-
eral radiative transfer effects take place and progressively affect
the excitation within the slab. Note that for the smallest width
(i.e., 1000 km), we properly recover an almost constant value
S/B = 0.5 consistent with optically thin conditions along the
horizontal extension of the 2D slab. As first reported by Paletou
(1997), we also recover here under which conditions 2D radia-
tive transfer effects on the Hα source function vertical variations
can be significant; more generally, such effects are expected
a priori for any other spectral lines of moderate optical thickness.

Figures 8 are contour plots of the two excited levels of hy-
drogen normalized to their LTE values obtained for a 30 000 km
by 5000 km slab. They show both departures from LTE together
with geometry effects within the slab’s atmosphere. However,
since such data do not exist yet in the litterature while needs for
multidimensional radiative modelling tools are more and more
obvious, we found Table 2 to be highly valuable for benchmark
purposes and in detailing the information content of Fig. 8 about
the populations distribution across the 2D slab.

6. Conclusions

We have given here details about the implementation of
GS/SOR iterative processes in 2D cartesian geometry, informa-
tion which was unfortunately still missing in the astrophysical
litterature. We also tested, for the first time, such 2D-GS/SOR it-
erative schemes with a two-level atom model against original
analytical results; a more comprehensive study, both in 1D and
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Table 1. Computation time (for a Pentium-4 @ 3 GHz processor) and number of iterations for the H imultilevel benchmark model of Avrett (1968)
in a 2D grid with ymax = 5000 km and zmax = 30 000 km together with 3 angles per octant and 8 frequencies; the temperature of the atmosphere is
5000 K and the gas pressure pg = 1 dyn cm−2.

Points number MALI 2D GSM 2D SOR 2D MG 2D Rc

123 × 123 3 min 9 s (46) 2 min 19 s (29) 1 min 17 s (16) 55 s (11) 1.1 × 10−2

163 × 163 9 min 39 s (79) 6 min 56 s (48) 3 min 33 s (24) 1 min 52 s (13) 2.1 × 10−3

203 × 203 22 min 47 s (116) 14 min 36 s (68) 7 min 34 s (33) 2 min 50 s (14) 5.7 × 10−4

243 × 243 45 min 32 s (158) 29 min 10 s (90) 14 min 3 s (43) 4 min 13 s (14) 1.9 × 10−4

Fig. 7. Vertical variations of the Hα source function (in units of B)
along the symmetry axis of the 2D slab with zmax = 30 000 km and
different horizontal extensions ymax ranging from 1000 km to ∞ (1D);
the temperature of the atmosphere is 5000 K and the gas pressure
pg = 1 dyn cm−2. The solid line represents S (Hα)/B variations com-
puted in 1D. Note that abscissae give geometrical positions computed
downwards from the top surface up to mid-slab and then, symmetrically,
upward from slab bottom.

Fig. 8. Contour diagram of (top) the second-level populations n2/n∗2 and
(bottom) the third-level populations n3/n∗3 in a grid with ymax = 5 kkm,
zmax = 30 kkm, T = 5000 K and pg = 1 dyn cm−2. The slab is illumi-
nated from below with a Planck function and n∗2 and n∗3 are LTE values.
Horizontal and vertical axes are defined as described in Fig. 7.

in 2D, is being conducted and results will be published else-
where.

Concerning the modelling of illuminated freestanding slabs,
even though we used quite a simple atomic model, we found it
to be a necessary stage not only to validate our numerical work
but also to take the opportunity to deliver reliable 2D multilevel
benchmark results; typical CPU usage numbers were also given,
clearly in favour of the combination of SOR plus MG methods
for complex radiative modelling.

We anticipate that such numerical techniques and benchmark
results will be of interest for the new radiative transfer codes
currently in use or under development, not only for applications
in solar physics but also for interstellar clouds (see e.g., Juvela &
Padoan 2005), circumstellar environments with winds (see e.g.,
Georgiev et al. 2006) or accretion disks (see e.g., Korčáková &
Kubát 2005) modelling for instance.
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thank an anonymous referee for her/his valuable comments which helped us to
clarify some technical points.

Appendix A: Test case for a 2D code
using 1D reference solutions

We describe a test case for radiative transfer methods in
2D cartesian geometry with stationary media, using 1D refer-
ence solutions, which are provided using an analytical method.
For this purpose, the ARTY code is the numerical implementa-
tion, whose accuracy is better than 10−10, of exact analytical so-
lutions, based on a mathematical method using the finite Laplace
transform (Chevallier & Rutily 2005; Chevallier et al. 2003, and
references therein).

Our radiative model describes a 2D medium which can scat-
ter in 3D and is infinite and homogeneous along the x-axis
(−∞ ≤ x ≤ +∞, 0 ≤ y ≤ ymax, 0 ≤ z ≤ zmax), thus quan-
tities involved in the radiative transfer equation (RTE) do not
depend on x. This medium is considered such that there is no
incoming flux on its boundaries along the y- and z-axes. In order
to compare this 2D case to 1D solutions from ARTY, we con-
sider here the 2D primary source to be an infinite line along the
x-axis, located at the center of the slab, emitting isotropically,
and the medium homogenous and isotropically scattering; the
later is also monochromatic i.e., the RTE does not depend on
the frequency (which will not be mentioned hereafter) as is the
case when we describe the continuum or a spectral line with the
Milne profile, which is constant over any finite energy range and
0 elsewhere.

We hereafter write the RTE in 2D cartesian geometry, and
we show how to compare this 2D solution integrated on the
y-axis to a 1D solution. Table A.1 sums up some values of the
1D solution at the surface z = 0. The RTE for our 2D model is
(cf. Chandrasekhar 1950, Chap. I, Eq. (48) or Pomraning 1973,
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Table 2. Second-level (top) and third-level (bottom) populations for the Avrett (1968) H i atomic model in a 2D grid of 163 points per direction
with ymax = 5000 km and zmax = 30 000 km together with 3 angles per octant and 8 frequencies; the temperature of the atmosphere is 5000 K and
the gas pressure pg = 1 dyn cm−2.

y-position
z-position 1 10 102 103 104 105 106 107 108 2.5 × 108

1 93.6107 52.4326 15.8861 6.29160 5.01322 5.02310 5.02508 5.02511 5.02517 5.02521
10 113.845 84.3495 29.7678 11.8603 9.45411 9.47290 9.47663 9.47669 9.47682 9.47690
102 136.951 128.456 86.6607 38.9345 31.1428 31.2092 31.2215 31.2217 31.2222 31.2225
103 145.777 145.248 141.607 121.020 104.541 104.935 104.976 104.977 104.979 104.980
104 148.677 150.732 159.910 188.041 229.865 237.425 237.537 237.539 237.543 237.545
105 149.219 151.755 163.283 199.744 265.198 290.210 291.726 291.727 291.732 291.736
106 149.257 151.825 163.517 200.529 267.018 294.048 296.308 296.366 296.371 296.375
107 149.259 151.829 163.530 200.576 267.127 294.182 296.502 296.640 296.645 296.648
108 149.255 151.823 163.517 200.557 267.101 294.153 296.473 296.611 296.597 296.593
109 149.243 151.801 163.469 200.491 267.010 294.051 296.370 296.509 296.499 296.494

1.5 × 109 149.241 151.798 163.462 200.481 266.996 294.036 296.355 296.495 296.495 296.494
3 × 109−109 149.239 151.795 163.455 200.471 266.983 294.020 296.339 296.480 296.489 296.493
3 × 109−108 149.227 151.773 163.408 200.404 266.891 293.918 296.236 296.378 296.392 296.396
3 × 109−107 149.223 151.767 163.394 200.386 266.866 293.890 296.207 296.348 296.344 296.341
3 × 109−106 149.223 151.766 163.393 200.384 266.863 293.886 296.204 296.343 296.338 296.334
3 × 109−105 149.223 151.767 163.396 200.395 266.887 293.944 296.201 296.337 296.331 296.328
3 × 109−104 149.286 151.886 163.789 201.752 270.398 294.453 296.151 296.261 296.256 296.253
3 × 109−103 150.529 154.236 171.626 228.713 285.362 295.302 296.043 296.091 296.086 296.083
3 × 109−102 157.815 168.092 216.220 274.214 292.499 295.409 295.629 295.643 295.639 295.636
3 × 109−10 179.929 210.210 266.745 287.561 293.106 293.988 294.055 294.059 294.057 294.055
3 × 109−1 199.795 241.337 278.860 289.983 292.923 293.390 293.426 293.428 293.427 293.426

y-position
z-position 1 10 102 103 104 105 106 107 108 2.5 × 108

1 1.86186 1.39630 0.486537 0.153291 0.118500 0.118255 0.118259 0.118240 0.118095 0.118004
10 2.04988 1.69002 0.627277 0.207928 0.161807 0.161613 0.161631 0.161604 0.161402 0.161275
102 2.39169 2.20327 1.31802 0.534052 0.422122 0.422372 0.422476 0.422406 0.421855 0.421507
103 2.59030 2.47736 2.04905 1.61663 1.38949 1.39398 1.39445 1.39422 1.39235 1.39117
104 2.65493 2.56695 2.29196 2.50136 3.04375 3.14272 3.14409 3.14357 3.13933 3.13665
105 2.66696 2.58361 2.33664 2.65572 3.50992 3.83926 3.85912 3.85848 3.85327 3.84998
106 2.66789 2.58487 2.33988 2.66628 3.53420 3.89018 3.92008 3.92026 3.91497 3.91163
107 2.66898 2.58607 2.34158 2.66891 3.53832 3.89491 3.92572 3.92885 3.92452 3.92119
108 2.67909 2.59711 2.35631 2.68839 3.56437 3.92360 3.95464 3.95879 3.97321 3.97675
109 2.71539 2.63671 2.40913 2.75824 3.65778 4.02648 4.05820 4.06111 4.07079 4.07557

1.5 × 109 2.72068 2.64248 2.41682 2.76842 3.67139 4.04146 4.07319 4.07500 4.07460 4.07610
3 × 109−109 2.72615 2.64845 2.42479 2.77894 3.68546 4.05695 4.08873 4.08978 4.08135 4.07652
3 × 109−108 2.76248 2.68807 2.47763 2.84882 3.77890 4.15986 4.19231 4.19203 4.17766 4.17398
3 × 109−107 2.77246 2.69897 2.49216 2.86803 3.80459 4.18815 4.22083 4.22152 4.22589 4.22921
3 × 109−106 2.77348 2.70008 2.49365 2.86999 3.80721 4.19103 4.22384 4.22638 4.23167 4.23501
3 × 109−105 2.77363 2.70025 2.49389 2.87039 3.80787 4.19223 4.22439 4.22699 4.23228 4.23561
3 × 109−104 2.77557 2.70281 2.50008 2.89035 3.85874 4.20084 4.22507 4.22730 4.23259 4.23593
3 × 109−103 2.81121 2.75044 2.62027 3.28700 4.08933 4.23074 4.24134 4.24270 4.24796 4.25128
3 × 109−102 3.08898 3.10503 3.45736 4.22654 4.48790 4.52946 4.53266 4.53348 4.53832 4.54137
3 × 109−10 3.71314 3.95438 4.74064 5.11335 5.21097 5.22648 5.22770 5.22826 5.23210 5.23452
3 × 109−1 3.99111 4.39634 5.06123 5.33812 5.40867 5.41987 5.42076 5.42127 5.42483 5.42707

Eq. (2.60), without derivative over x though)

sin θ sinϕ
∂I
∂y

(y, z, θ, ϕ) + cos θ
∂I
∂z

(y, z, θ, ϕ) =

−χ[I(y, z, θ, ϕ) − S (y, z)], (A.1)

where I is the specific intensity of the radiative field at (y, z)
and in the direction (θ, ϕ) of the unit vector n whose coordinates
along x, y, and z are sin θ cosϕ, sin θ sin ϕ, and cos θ, respec-
tively. χ is the constant opacity of the homogeneous medium,
and S is the unknown source function which can be written

S (y, z) = S ∗(y, z) +�J(y, z). (A.2)

S ∗ describes the primary source function i.e., the direct known
radiative field emitted by internal sources, � = (1 − ε) is the

constant scattering coefficient of the homogeneous medium for
simple scattering processes, usually called albedo, and J is the
mean intensity of the radiative field defined as

J(y, z) =
1

4π

∫ π

0
dθ

∫ 2π

0
dϕ sin θ I(y, z, θ, ϕ); (A.3)

the primary source function is

S ∗(y, z) =
L
χ
δ
(
y − ymax

2

)
δ
(
z − zmax

2

)
, (A.4)

where L is the luminosity per unit length along the x-axis.
Dividing by χ means that the source function is an emissivity
divided by the opacity. In order to use 1D solutions as a
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Table A.1. Reference solutions from the ARTY code at the surface z =
0 for our test case with L = 1, χ = 1, zmax = 100 and ε = 0.01 (see the
text for the values of µi).

ARTY results

S (0) 2.710704655 × 10−4

J(0) 2.738085511 × 10−4

H(0) 1.600980711 × 10−4

K(0) 1.130399095 × 10−4

I(0, µ1) 7.837047273 × 10−4

I(0, µ2) 6.965481933 × 10−4

I(0, µ3) 5.880635905 × 10−4

I(0, µ4) 4.026985767 × 10−4

reference, we must integrate the 2D solutions on y over [0, ymax]
and on ϕ over [0, 2π]. We thus define new functions as

Ĩ(z, θ) =
1

2π

∫ ymax

0
dy

∫ 2π

0
dϕI(y, z, θ, ϕ). (A.5)

Similarly we define S̃ (z) = S̃ ∗(z) + �J̃(z), S̃ ∗(z) = L/χ δ(z −
zmax/2), J̃(z) and the two successive moments, the radiative
flux H̃(z), and the radiative pressure K̃(z) as

[J̃, H̃, K̃](z) =
1
2

∫ π

0
Ĩ(z, θ)[1, cos θ, cos2 θ] sin θdθ. (A.6)

Integrating over y and ϕ, and using the symmetry property valid
for ϕ ∈ [0, π]: I(ymax, z, θ, ϕ) = I(0, z, θ, π+ϕ), due to the central
primary source, Eq. (A.1) becomes

sin θ
π

∫ π

0
sin ϕI(ymax, z, θ, ϕ)dϕ + cos θ

∂Ĩ
∂z

(z, θ) =

−χ[Ĩ(z, θ) − S̃ (z)], (A.7)

where the integral is nul only for θ = 0 or π; note that this simpli-
fication is fictitious as, even for these angles, the source function
depends on the mean intensity which depends on the boundaries
due to the angular integration. This problem is not classical and
we need to let ymax → +∞ in order to suppress this term i.e., the
radiation of the primary source is nul at the infinite and Eq. (A.7)
then reduces to the well-known 1D equation:

µ
∂I
∂z

(z, µ) = −χ[I(z, µ) − S (z)], (A.8)

where µ = cos θ.
Equation (A.8) is usually expressed in optical depth coordi-

nates τ(z) =
∫ zmax

z
χ(z′)dz′ = χ(zmax−z). We do not write the RTE,

but the primary source function becomes S ∗(τ) = Lδ(τ−τmax/2)
due to the Dirac transformation δ(z) = χδ(χz). Accordingly, our
2D primary source function becomes

S ∗(τy, τz) = χ L δ
(
τy − τymax

2

)
δ
(
τz − τzmax

2

)
, (A.9)

where τy = χ(ymax − y) and τz = χ(zmax − z). In order to simplify
the test of a 2D code with a 1D reference solution, the values
L = 1 and χ = 1 should be used.

We give in Table A.1 some values of the 1D solution at
the surface z = 0, for the source function, the specific in-
tensity for the directions of the angular grid used in this pa-
per, and its three first moments. When integrating all angles
over the azimuthal angle ϕ, the 10-points per octant angular
quadrature resume to a 4-points per quadrant, i.e. [J,H,K](z) =∑

i=1,4 wi[1, µi, µ
2
i ]I(z, µi) for such a case where there is no

incoming flux. The four directions µi are 0.95118969679,
0.78679579496, 0.57735025883, 0.21821789443 and the in-
tegration weights wi are 0.063490696251, 0.091383516788,
0.12676086649, 0.21836490929, respectively. It is interesting to
note that, using the reference solutions, the angular quadrature
for J, H, and K will lead to a relative error equal to 0.8%, 0.3%,
and 0.4%, respectively.
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