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ABSTRACT 

Differential-equation methods for solving the transfer equation in two-dimensional planar 
geometries are developed. One method, which uses a Hermitian integration formula on ray 
segments through grid points, proves to be extremely well suited to velocity-dependent problems. 
An efficient elimination scheme is developed for which the computing time scales linearly with 
the number of angles and frequencies; we are thus able to treat problems with large velocity 
amplitudes accurately. 

A very accurate and efficient method for performing a formal solution is also presented. A 
discussion is given of several examples of periodic media and freestanding slabs, both in static 
cases and with velocity fields. For the freestanding slabs, two-dimensional transport effects are 
significant near boundaries, but no important effects were found in any of the periodic cases that 
we have studied. 
Subject headings: radiative transfer — stars : atmospheres 

I. INTRODUCTION 

When the solar atmosphere is observed with high spatial, temporal, and wavelength resolution, an enormous 
variety of small-scale structural features is found. These features indicate the presence of strong local variations 
in the basic physical properties of the atmospheric material, and are often associated with velocity and magnetic 
fields. The interpretation of spectral lines observed in these structures offers the opportunity of obtaining insight 
into their origin, dynamical behavior, evolution, and effect upon the atmosphere. However, as many of the observed 
structures are of very small size, there can be significant radiative interaction with neighboring regions having 
different physical properties; and before we can believe our diagnostics, we must fully understand the effects 
of lateral transport upon the observed spectrum. In addition, one can observe essentially isolated structures (both 
freestanding such as prominences, or embedded in an ambient medium, such as sunspots or the supergranulation 
network). These are strongly influenced by the basic geometric configuration and by externally imposed boundary 
conditions (i.e., incident radiation fields). A fully satisfactory analysis of them must be based on a detailed spec- 
troscopic study in which full allowance is made for the multidimensional physical structure and for the presence 
of complicated velocity fields. 

Considerable effort has been expended by a number of astronomers on the solution of multidimensional transfer 
problems. This work ranges from computations of emergent spectra from multidimensional (or multicomponent) 
media in which the source function is presumed to be known (i.e., a formal solution) to full solutions of the coupled 
transfer and statistical equilibrium equations. A wide variety of mathematical techniques has been employed, 
including integration along rays, differential equation methods, integral equation methods, and Fourier transform 
techniques. As an extensive review of the physical effects of multidimensional radiative transfer (Jones and 
Skumanich 1977) and an exhaustive bibliography of the relevant literature (Cram, Durrant, and Kneer 1977) 
have recently appeared, we shall not attempt such a summary here. A concise statement of the present status of 
the field can be reduced to the following remarks: while substantial progress has been made toward the solution 
of multidimensional problems, no one approach has yet solved the full range of problems satisfactorily, and further 
development of mathematical methods is needed. 

In this paper we describe effective methods for solving the transfer problems for two-level atoms in two- 
dimensional planar media (with velocity fields). The published work most closely related to ours is that of Cannon 
(1970) and Cannon and Rees (1971). 

The principal new features in the present approach are as follows : (1) In addition to ordinary difference-equation 
methods, we have developed a hybrid scheme that incorporates the best features of ray-tracing methods (by solving 
the transfer problem along a characteristic ray) and difference-equation methods (by centering the rays onto a 
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1002 MIRALAS, AUER, AND MIRALAS Vol. 220 

regular rectangular mesh) and uses a high-order Hermitian integration formula (Auer 1976). In practice this new 
approach is superior to difference-equation techniques, especially when there are velocity fields present. In fact, 
it provides solutions with ease in cases where the standard difference equations fail totally. (2) We employ an 
elimination scheme related to that developed by Rybicki (1971) for one-dimensional problems; as a result the 
computing time is oxúy linear in the number of angles and frequencies used in the quadrature formulae for the 
scattering integral. Such a scaling is very favorable when velocity fields are present. (3) An efficient and accurate 
method is employed in the formal solution, i.e., in the calculation of the emergent intensity as a function of 
position, angle, and frequency for a given source function. (4) We have treated a wide range of boundary conditions, 
including those applicable to periodic media, structures embedded in ambient atmospheres, and freestanding 
structures. 

Our presentation will be basically methodological, and the applications described in § III are meant to be only 
illustrative, and are not attempts to model real structures in the actual solar atmosphere (though reasonable values 
for most parameters have been chosen). The computer programs that implement our technique are available to 
interested investigators as part of the High Altitude Observatory Radiative Transfer Library, and we hope that 
they will be extensively used. 

II. METHOD 

a) Differential Equations and Boundary Conditions 

Consider a region (0 < x < X), (-Z < z < 0) in the {x, z)-plane, as shown in Figure 1, representing a cross 
section of the atmosphere over which material properties and radiation fields vary ; the medium is assumed to be 
infinite and strictly homogeneous in the ^-direction, which is perpendicular to the plane shown. We shall refer 
to the surface {x, 0) as the “top” of the atmosphere, the surface {x, —Z) as the “bottom” of the atmosphere, 
the surface (0, z) as the “left-hand” boundary, and the surface (X, z) as the “right-hand” boundary. Now consider 
a ray along which radiation propagates at angle 6 to the z-axis, and whose projection on the (x, y)-plane is at an 
angle <¡> to the x-axis ; let [m = cos 6 and y = sin 0 cos <f>. Then the transfer equation along the ray is 

¡i di y 31 
xdz + Xdx 0) 

where I = I(x, z, v, 8, </>), and the opacity is 

X(x, z, v, 8, <j>) = Xl(x, z)0(*, z, v, 8,<j>) + Xc(x, z) = Xc{x, z)[l + ß(x, z)0]. (2) 

Here Xh and Xc denote the line and continuum opacity respectively, and O is the line profile function. For definite- 
ness we shall use a Doppler profile throughout this paper and we shall measure frequencies and velocities in 
terms of a fiducial Doppler width A^*. Then 

®(x, z, v, 8, £) = 7t-1/2A(x, z) exp {-A(x, z)2[v - pvz{x, z) - yvx{x, z)]2} , (3) 

z 

Fig. 1.—Geometry of planar slab. The medium is assumed to be infinite and homogeneous in the y-direction (out of the plane 
of the figure). Indexing conventions are described in the text. 
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No. 3, 1978 TWO-DIMENSIONAL RADIATIVE TRANSFER 1003 

where A(x, z) = AvD*/AvD(x, z) is the reciprocal Doppler width in fiducial units. Generalization to any other 
profile function offers no difficulty. The source function is taken to be that appropriate to a two-level atom with 
complete redistribution, i.e., 

S(x, z, v, 09 <£) 
[1 - €(x, z)]ß(x, z)Q(x, z, v, e, 4) 

1 + ß(x, z)0(x, z, v, 6, t) 
doj 
4tt 

I(x, Z,v9 6, Z, v, d, (/>) 

[1 + €(x, z)ß(x, z)®(x, z, V, 6, <f>)] 
+ i + ß(x9zmx,z9v9e,<t>) ^x’z) 

= [1 - Ç(x, z, V, 0, <£)]/(*, z) -1- Ç(x, z, V, 0, <t>)B(x, z) . (4) 

Here f measures the total destruction probability of a photon, B denotes an equivalent thermal source term 
(which may in principle include photoionization-recombination terms), and € is the collisional destruction 
probability € = Cul/(Pui + Cul). 

The assumption of complete redistribution is more restrictive than that made by Cannon (1970) and Cannon 
and Rees (1971), whose method can treat partial redistribution. However, this restriction offers the major advantage 
that we can employ the Rybicki (1971) elimination scheme with a considerable gain in computational economy 
compared to the Feautrier (1964) scheme when large numbers of angles and frequencies are required to evaluate 
the scattering integral. Given the primitive state of our insight into multidimensional transfer problems, we feel 
that it is worthwhile to sacrifice the refinement of partial redistribution in favor of low computation cost. 

The transfer equation may be cast into second-order form by use of the symmetric and antisymmetric averages 
for the specific intensity along a ray, namely, 

and 
u = u(x9 z, V, /X, y) = %[I(x, z, V, /X, y) + /(*, z, -v, -/x, -y)] (5a) 

V = v(x, Z, v, /x, y) = %[I{x9 Z, v, /x, y) - I(x9 Z, -v, -/x, -y)] . (5b) 

Having assumed that the medium is homogeneous in the y-direction, we shall take both the internal radiation 
field and the imposed boundary conditions to be symmetric with respect to the (x, z)-plane. Thus to describe the 
radiation field in the most general case we must consider the ranges 0 < /x < 1, — 1 < y < 1. In the event that 
the physical properties in the slab are symmetric about the midpoint X/2 [except for vx(x9 z) which is anti- 
symmetric], and the radiation fields imposed on the left-hand and right-hand boundaries are the same, then we 
need to consider only 0 < /x < 1 and 0 < y <1, for then u(x, z, v, /x, —y) = u(X — x, z, v, jjl, y). We must, 
however, still consider the full range 0 < x < X. 

Writing equation (1) in terms of u and v, we have 

¡¿du y du 
ÿdz X&c 

(6a) 

and 
ydv_ = 

xdz 
u; (6b) 

or substituting for î; from (6a) into (6b) we have 

Ax d y d \2 

u = u - S. 
\X dz x dxJ 

Boundary conditions on each face follow directly from equations (5) and (6a). They are always of the form 

a du y du , . c-7r + -;r- = tfw + ¿>. 
Xdz Xdx 

ü) 

(8) 

b) Discretization 

We now introduce discretizations in space, angle, and frequency in order to reduce the partial differential 
equations to a set of linear algebraic equations. We choose a spatial mesh {Xi, z,} (/ = 1,. ..,/;y = 1,..J) 
spanning the domain (see Fig. 1). For atmospheres in which the density (and hence opacity) rises exponentially 
with depth it is advantageous to use uniform steps in Az, as this yields a logarithmic spacing in optical depth 
along z. For media with almost constant properties a logarithmic spacing in x and z is preferable (see Fig. 2). 

To describe the angular dependence of the radiation field we used the rotation-invariant discrete mesh {uu yj 
(/ = 1,.. .,L) of Carlson (1963). The majority of the results reported here were computed with his “Set B” with 
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1004 MIRALAS, AUER, AND MIRALAS Vol. 220 

Fig. 2.—Mesh-lines for a finite slab with logarithmic spacing of the intervals away from the boundary surfaces; such a choice 
is appropriate in, e.g., a homogeneous freestanding slab. Note that the ray through the grid-point O does not, in general, intersect 
any of the other grid-points defined by the intersections of mesh lines, and, further, that the spacing of points of intersection of the 
ray with the mesh lines is extremely irregular. 

six points per octant. Our “Eddington approximation” results correspond to the choices L = 1, /¿i = n = 1/a/3> 
which implies 0 = cos“1 (1/V3) and <f> = tt/4. 

For the frequency quadrature we have used the trapezoidal rule with equal steps of 0.5AvD*. If the frequency 
mesh (measured in units of AvD*) is {vf} (/ = 1,..., F), then the scattering integral is approximated by the 
expression 

/» oo /»n /» 1 K 
Jij = j(xu z¡) = IT-312A» I dv I d<t> \ dfi exp [-A(/(v - Z/, y, 9 ~ 2 w>c%kunk ■ (9) 

J- ao Jq J 0 k=l 

Here the angle and frequency quadratures have been combined into a single product quadrature with K = L*F. 

c) Approximation of the Differential Operator 

Discrete representations of the differential operator in equation (7) can be developed from two different points 
of view. One approach is to use an ordinary difference-equation approximation as described in Appendix A; 
this, however, proves unsatisfactory when velocity fields are present. Alternatively, we observe that the differential 
operator in equation (7) is simply the second derivative with respect to the optical path-length along the ray (which 
is a characteristic of the equation). Thus choosing rVMy, the optical depth along the ray, as an independent variable 
we can reduce the partial differential equation for the two-dimensional problem to an equivalent one-dimensional 
problem described by the ordinary differential equation 

d2u U UVltY _ 7. J 2 “ UVHV u,VßY 
— SVi (10) 

To solve this equation we can apply a high-order Hermitian formula (Auer 1976) which is very accurate and 
stable. 

If we were always able to use the Eddington approximation with Ax = Az = constant, the integration procedure 
would be simple because in this case each ray goes through only grid-points, and no interpolation is necessary. 
Unfortunately, this is not the usual situation (cf. Fig. 2), for in general a ray through a particular grid-point will 
not pass through any other grid-point, and, in addition, the spacing of the points of intersection of the ray with 
the prechosen mesh-lines is very irregular. Thus a more elaborate method must be employed. If one attempts 
to perform the integration literally along a ray passing entirely through the medium from one boundary surface 
to another, the interpolation problems encountered are severe (Jones and Skumanich 1973; Jones 1973). But these 
difficulties can be overcome elegantly by integrating along a ray through each grid-point only from that point to 
the point of intersection of the ray with the next mesh-line. The procedure is illustrated in Figure 1, where the 
integration extends only from M through O to P. Values of the physical variables and the radiation field at points 
M and P are obtained by parabolic interpolation on the periphery of the nine-point stencil surrounding point O. 
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No. 3, 1978 TWO-DIMENSIONAL RADIATIVE TRANSFER 1005 

The requisite interpolations can be carried out with high accuracy because they occur along mesh-lines. This 
approach is similar to an idea used by Hartree (Hartree 1958; Fox 1962) for the solution of partial differential 
equations along curved characteristics. 

Consider Figure 1 ; let Ar+ and Ar_ be the optical-depth increments from M to O and from O to P, respectively. 
Then the Hermite formula (suppressing unnecessary subscripts) is 

— {ci — Á)Uui ~l"(l + c — A — C)u0 — (c — C)i/p = ASm -f" (1 A C^Sq CSp, (10 
where 

a = 2/[At_(At_ + Ar+)], (12a) 

c = 2/[At+(At_ + At+)], (12b) 

A = &1 -iaAr+
2), (12c) 

and 
C ^ i(l - lcAr_2) . (12d) 

As noted above, points M and P are in general not grid points, and physical quantities at these points are obtained 
by interpolation. If O is at (/, j) in the grid, then after substituting the interpolation formula, equation (11) reduces 
at interior points to the general form 

j+l i+l 
V V (ki’j'Ui'y -b h'j'Ji'j') = Mij . (13) 

Equations that apply at boundary points are derived from equation (8) by similar considerations. If O is a 
grid-point on an exterior boundary, we have a third-order equation of the form 

«p(L - ¿At) - + ¿Ar + a) = é - ¿At(2So + SP). (14) 

Again the necessary values at P are expressed in terms of grid values by means of Lagrangian interpolation. At 
periodic boundaries equation (13) applies directly with suitable relabeling of grid-points across the interface. 

Because quantities such as /, ln x« vx, vZ9 A, €, ß, and B are relatively slowly varying functions of position, they 
can be interpolated directly. For the profile function O it is essential in the presence of velocity field to interpolate 
not O itself, but the variables determining the value of its argument (i.e., A, vx, and t;2), and then to compute 
0M or Op explicitly. The method used to evaluate the optical depth increments is described in Appendix B. 

In practice the Hermitian ray-integration and the difference-equation methods work about equally well for 
static media. But for cases with velocity fields of sizable amplitudes the Hermitian method is overwhelmingly 
superior. In these cases the difference equations often fail and yield negative radiation fields or singular systems 
of equations ; the problem is that differencing At along the mesh-lines gives a poor representation of its behavior 
along a ray. In contrast, the Hermitian method treats directly the opacity variation along the actual ray on which 
the radiation propagates, and thus retains excellent accuracy and stability. 

Finally, it should be noted that both schemes are automatically consistent with the diffusion approximation 
at great depth; this is not the case with some other methods (e.g., integral-equation methods) where special efforts 
must be made to secure this consistency. 

d) Elimination Scheme 

For a given choice of the angle-frequency index k, we organize the ^-variation of uijk at a specific depth 
into a vector 

Uj = (Wiy, Uzj, . . - , W//)T (15) 

(the subscript k is suppressed here and through eq. [26] for brevity). Then the transfer equation, including boundary 
conditions, can be written in the general form 

A jUj _ i + BjUj + CjUj+1 — 2 Djj Jj' + Ej, 
r=)-i 

(16) 

where 

/^(/iy,/2y,...,4)r, (17) 

The matrices A, B, and Care of dimension (/ x I) and are tridiagonal or periodic tridiagonal. For nonsymmetric 
cases the D matrices are of dimension (/ x 7). If the medium is symmetric about a midpoint whose index is 7m, 
then we need consider only the range i = 1,..., 7m for /iy and the D matrices become (7 x 7m) chevron matrices. 
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1006 MIRALAS, AUER, AND MIRALAS Vol. 220 

Equations (16) for (y = 1,...,/) can be solved by a forward-elimination, back-substitution scheme. The 
recursion formula for the forward elimination is easily shown to be of the form 

ui — — UjUj+i + 2 Vii'h' + 
i'*y+i 

where 

(18) 

(19) 

(20) 

(21a) 

(21b) 

(21c) 

The matrices U and V are full, and in the general case are of dimension (7 x 7); for a symmetric medium the V 
matrices collapse to dimension (7 x 7m). The boundary conditions imply that = 0, Di0 = 0, Cj = 0, and 
DjtJ+1 E= 0; thus the forward elimination can be carried out straightaway to obtain all Uj and V»' matrices for 

Having completed the forward elimination, we can now back-substitute to develop relations of the form 

and 

Wj = (Bj - - AjfVj.,), 

V, = (5, - AV^-'C,, 

Vjj+i = (Bj — AjUj-1)~1Dltj+1, 

Viy = (B¡ - - AjVj-íj') W =JJ - 1) , 

V„. = —(Bj - (/' < 7 - O • 

where for j = J 

and for j < J 

“y — 2 "I" » y-i 

X„.= VJr and Yj = W} ; 

X,, = Vir - ^+1,r O' < 7 + 1) , 

*yy. =-£/yXy + 1,y. (/' >7+ 1), 

Yj = ^y — UjYj+i • 

(22) 

(23), (24) 

(25a) 

(25b) 

(26) 

The X matrices are of dimension (7 x 7) in the general case and (7 x 7M) for the symmetric case ; the vectors Y 
are of dimension 7. The back-substitution is carried out for / = 2, 1 using equations (23)-(26). 

The whole forward-elimination, back-substitution scheme is carried out for each of the K angle-frequency 
choices, and the results used in equation (9), which may be written as 

7y — 2 Yjkujk , k = l 
to develop, ultimately, the linear system 

/y= 2 + ^ c/= l,..-,^), 
7'= 1 

where 

^77' == 2 

and 

H,^2FJkY]k. 

(27) 

(28) 

(29) 

(30) 
k = l 

Solution of the system (28) yields the full spatial variation of J(x, z), from which the spatial and frequency 
dependence of the source function can be computed via equation (4). The weight matrices in the general case are 
diagonal and are of dimension 7; in the symmetric case they are (7m x 7) chevron matrices. In the general case 
the G matrices are of dimension (7 x 7), but for symmetric media they are of dimension (7m x 7m). In the general 
case final system (28) is of dimension (77 x 77) ; in the symmetric case it is of dimension (7m7 x 7m7). 

The forward-elimination back-substitution scheme requires of the order of (3/2)KI3J2 or (3/2)KIm
3J2 multi- 

plications in the general and symmetric cases, respectively. We have solved the final system (28) directlyy which 
requires on the order of £7373 or J7m

373 multiplications; it would also be possible to employ an iterative method 
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(e.g., a block successive overrelaxation scheme), but in practice the final system solution requires much less time 
than the forward-elimination, back-substitution procedure, so little if any economy would be realized. The overall 
scaling of the computing time is T ~ 73/2(c1A: + c2J) oxT ~ I^^PK + c2Im

2J) for the general and symmetric 
cases, respectively; the first terms in the parentheses dominate. 

The number of multiplications required by Cannon’s method (1970) is of the order of K3I3J, so that the com- 
puting times for the two schemes are in the ratio (Cannon/present) ~ K2/J. Thus the present method becomes 
quite favorable when the number of angle-frequency points must be large. For two reasons, the number 7T becomes 
large when velocity fields of several Doppler widths occur. First, a sufficient number of frequencies must be 
chosen to cover the full profile plus Doppler shift, i.e., a range of about ± (3.5 + | F|max) Doppler units (typically 
in steps of ^ Doppler unit). Second, if a frequency step Ax = Av/AvD* is selected to provide a certain level of 
accuracy for the frequency quadrature in equation (9), then angles must be chosen so that |A/x| (or |Ay|) ^ 
Ax/1 F|max to retain this accuracy. If | F|max ~ 2 (as in cases we have considered below) and Ax ~ clearly several 
angles per octant are indicated. We have treated cases with as many as 12 angles per octant and 23 frequencies 
in the line without prohibitive cost; such cases would be essentially intractable with Cannon’s method. 

Finally, it should be noted that although the method has been described for a two-level atom problem, it can, 
in principle, be generalized to treat multilevel atoms, at least using the equivalent-two-level-atom (ETLA) approach. 
In such a scheme one would solve for J in each of several transitions, one at a time, in turn, and use the resulting 
source functions and /’s to evaluate rates (or net rates) required by the analytical ETLA source function expres- 
sions. One then would attempt to iterate all of the radiation fields to self-consistency. In practice such a calculation 
would be quite costly, and there is much yet to be learned even from strict two-level-atom calculations before a 
multilevel computation will be worthwhile. 

e) Formal Solution for Emergent Intensities 

Having obtained the (x, z) variation of the source function, we are finally in a position to calculate the observable 
emergent intensity as a function of frequency, angle, and position on some chosen boundary of the medium. 
This is, of course, precisely the information needed to diagnose conditions in the material, and to predict line 
shapes and strengths for a given model. 

The problem of calculating the emergent radiation field from the formal solution of the transfer equation 
reduces to the quadrature 

I{x0, z0) = S(x, z)e_,<*,s)i/r(x, z) + IBC exp (- rmax) . (31) 
Jo 

Here (x0, z0) denotes the position at which the ray exits from the medium. The optical depth r(x, z) is measured 
along the ray, whose path length is s, i.e., r(x, z) = J x[x'(i), z\s)]ds, where x'(j) = x0 - 

s!y> an<i z'(s) = 
z0 - s/\ix\. Also, IBC is the incident intensity at the relevant boundary where the ray first penetrates into the 
medium. 

Because S(x, z) is known only at a discrete set of grid points, we cannot perform the integration indicated in 
equation (31) directly. Instead, we break the integral into a sum over discrete intervals spanning the range between 
successive intersections of the ray with the boundaries of the cells defined by the mesh lines (cf. Fig. 2). Thus 

/»*max 

Jo 
Se-’dr Se~zdr, (32) 

where = 0 and tn = rmax. Hence the problem is reduced to that of finding an appropriate approximation to 
J on (rfe, rfc+1), the contributions from a single cell. 

In performing the ray integration we can recognize two severe difficulties that arise in the multidimensional 
case and that are not present in the one-dimensional case. First, the spacing of the intervals along the ray may be 
highly irregular, as illustrated in Figure 2. There is no way in which the (x, z) grid can be chosen to avoid this 
problem for all angles and positions. Second, we must interpolate for S and x- In general a ray enters and leaves a 
cell by cutting through a mesh line defining the edge of the cell, rather than by passing through a grid point. 
We know the source function, however, only on the grid. The interpolation problem is particularly difficult because 
all interpolation must be done in the physical variables x and z, as it is practical to interpolate only on a Cartesian 
grid. Unfortunately, the large-scale variation of S' is likely to be badly represented by polynomials in x and z. To 
see why this is so, we note that in the one-dimensional case S can often be approximated by a linear function of 
r = — J %dz ; but in a stellar atmosphere in hydrostatic equilibrium y oc exp (—<xz) (recall z < 0). Thus the variation 
of S is, in general, more nearly exponential in x and z, and this variation will be poorly approximated by poly- 
nomials in these variables except over very small intervals. 

i) Integration Formula 

The first difficulty mentioned above implies that we require an accurate, stable, high-order method for the 
computation of the integral J Se~zdr between the limits |>fc, rfc+1]. The method we employ meets these criteria. 
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and is exact if S can be represented by a cubic in r on the discrete interval. Indeed we implicitly represent 5 as a 
piecewise cubic in r over the entire length of the ray. On each subinterval we approximate S' by a distinct cubic 
Hermite interpolating polynomial in r. Thus if S0 and Si are the values of the source function at r0 and rl9 and 
S0' and Si are the corresponding first derivatives with respect to r, the approximating Hermite polynomial on 
(r0, Ti) is 

S(r) = So(1 - 3£2 + 2a + SxiSP - 2a + Ar[S0'(f- 2£2 + a + Si'(-£2 + a]. (33) 

Here At = tí — r0, and f = (r — t0)/At. To avoid roundoff problems we may write the equivalent expansion 

S(T) = S+S'p + ¿Sy + iSV , (34) 

where p == t — ^(t0 + rj). The coefficients S, S', etc., are clearly approximations to S and its derivative at the 
midpoint of the interval. They are found to be 

5 = «So + Si) - ¿(S/ - S0')At , 

S' = |(5i — S0)/At — 1(5/ + S0'), 

S" = (5/ - S0')/At , 

§m = 6[(5/ + S0')At - 2(S1 - S0)]/At3. 

Substituting equations (34)-(35d) into the integral, we find the desired quadrature formula: 

Í S(r)e xdr ä e To(ooS + íü'S' + co"S" + ofS1") . 
•'Tn ^0 

For Ar ^ 1, the weights may be found by upward recursion, 

o> = 1 - e-Lx, 

co' = co — íAt(1 + e~bx), 

co" = co' + ^At2CO , 

co" = co" - At3(1 + e-AT)/48 , 

For At < l, the recursion is done downward starting from 

+7T!(t) +¿í(t) +'“] 

(35a) 

(35b) 

(35c) 

(35d) 

(36) 

(37a) 

(37b) 

(37c) 

(37d) 

(38) 

ii) Interpolation Procedure 

To evaluate equation (36), we require the values of both S and its first derivative with respect to t; these quantities 
are to be supplied by the interpolation procedure. To compute the derivative we use the formula 

dS 
dr (39) 

Hence our interpolation problem reduces to that of an accurate determination of x, S, (dS/dx)9 and (dS/dz) at 
the point where a ray crosses a mesh line. 

As we are always interpolating along mesh lines, the problem reduces to one-dimensional interpolation in x 
or in z. As was noted above, S and x depend exponentially on x and z; therefore all interpolations are done for 
In x and In S9 which permits accurate determination of the needed quantities. The spatial derivatives are recovered 
from the formulae {dSjdx) = S(d In Sjdx) and (dSjdz) = S(d In Sjdz). 

The opacity x is determined by assuming that In x is piecewise linear in z along lines of constant x and piecewise 
linear in x along lines of constant z. The optical-depth increment At needed for the integration formula is found 
by assuming that Inx is piecewise linear in A^; then At = As(xi — xoVO^xi — l^xo)* w^ere Xo and xi are 
determined by interpolation along the appropriate axis. 

The corresponding problem for S is solved by a combination of cubic spline and parabolic interpolation. The 
spline continuity equation (Ahlberg, Nilson, and Walsh 1967) is used to pose separate systems for d(lnS)/dx 
and d(\n S)/dz along mesh lines of constant z and constant x9 respectively. Boundary conditions for the spline 
system are supplied either by taking numerical derivatives of S at the endpoints of the mesh lines in nonperiodic 
cases, or by using the periodic spline boundary conditions for periodic media. Given the first derivatives obtained 
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from the solution of these tridiagonal systems, the piecewise cubic interpolating splines along the mesh lines are 
completely specified. Then, using the cubic splines, we can, for example, interpolate along the line x = ^ to 
determine In S(xi9 z) and d[ln S(xu z)]/dz for any value of z on a range Zj > z > zj + 1. We cannot, however, find 
0[ln S(Xi, z)]/dx in a similar manner unless we are willing to make spline estimates of d2(\n S)/dxdz, in which case 
we would have a true bicubic spline interpolant (which is costly to compute). Numerical experiments have shown 
that this is unnecessary. Satisfactory accuracy is obtained by parabolic interpolation in z of the values of 
d[\n S(x9 Zj)]/dx generated at the points (^, zj) by spline fits along the mesh lines z = zy. With much lower cost in 
time and storage, the order of the result is the same as that obtained by using the full bicubic spline. 

III. ILLUSTRATIVE EXAMPLES 

In order to test the computational methods presented in § II and to gain some insight into two-dimensional 
transfer effects, we have computed a number of illustrative examples for semi-infinite atmospheres with periodic 
structures, and for freestanding slabs, both for static media and with velocity fields with amplitudes up to two 
fiducial Doppler widths. For all cases, in addition to the full two-dimensional (2D) solution, we have computed 
corresponding multicomponent and spatially averaged source term solutions. In the multicomponent models the 
source function is obtained by solving a one-dimensional (ID) transfer problem in, say z, at each value of x, 
ignoring lateral transport. By applying the full 2D formal solution to the multicomponent (ID) source function 
we obtain what we shall refer to as l^D radiation fields. By the “spatially averaged” solution we mean that 
straight averages of all physical quantities (c, ß, Xc> etc.) were taken in the x-direction and then a single ID transfer 
problem was solved in the z-direction using these mean quantities. The velocity field was averaged in the micro- 
turbulent limit; i.e., we set {A)"1 = [<A(x, z)"2 + vz

2}]112. 

a) Periodic Media 

The basic questions to be answered by a full two-dimensional radiative transfer solution are: (1) How do lateral 
transport effects change the emergent and internal radiation fields? (2) How valid is the computationally simpler 
l^D solution? (3) Can we infer the mean radiation field from a mean atmospheric model? Finally, (4) How are 
velocity diagnostics affected? A complete answer to these questions would require investigation of an enormous 
variety of cases. In this paper we make a start by presenting results for an exponential atmosphere with periodic 
horizontal disturbances. Although the models are idealized, the parameters have been chosen to be consistent 
with typical solar values. In most cases we have taken X = 1000 km which is near the limit of resolution; zero 
incident radiation ;^(x,z) = 1 + 1.5rc, where rc is the vertical continuum optical depth; and yc = 10"7 exp (-0.01z). 
A few cases were computed with X = 100 km, which is below the limit of resolution, and is comparable to the 
vertical scale height. 

On the basis of scaling-rule arguments (e.g., Jones and Skumanich 1977) one would expect that for X = 1000 km, 
two-dimensional transfer effects should be neglible, essentially because the photon diffusion path-length is effec- 
tively truncated by the swift variation of material properties in the z-direction; for Z = 100 km, two-dimensional 
effects would be expected to occur. In actual fact, we have not found a single instance of a significant difference 
between the l^D and 2D solutions for any of the periodic cases that we have considered. It is still conceivable, how- 
ever, that if fluctuations with nonzero averages, or embedded structures with enormous variations of material 
properties at a contact discontinuity, were considered, significant two-dimensional effects might be found. But in 
view of the results obtained here, we are somewhat skeptical that major two-dimensional effects are to be found 
in most situations of practical interest. 

i) Case I 

The simplest variation to study is a periodic change in the line strength. We have considered cases with e(x, z) = 
€0, and j8(x, z) = jS0[l - 0.5 cos (27tx/Z)], with €0 = lO'3 or 1, and ßQ = 3, 10, 30, or 100. 

The conclusions in all cases are similar. As expected, the line is shallower at x = 0 than at Xß9 as illustrated 
in Figure 3a. There are substantial differences between the ID and 2D line source functions near the surface (see 
Fig. 36), which are always in the sense that 2D transfer effects reduce the lateral variations of the source function. 
But there is essentially no difference in the emergent intensities given by the l^D (multicomponent) and the full 
2D solutions (see Fig. 3c). The maximum difference found, for ß0 = 100, was 870; for ß0 = 3 the difference de- 
creased to only 170. As a consequence, the l^D solution gives almost identical variations of equivalent width 
W(x) with position (see Fig. 3d). The spatial average of W is identical for the l^D and 2D solutions, and is well 
approximated by that computed from the spatially averaged source-term model. We find no evidence for significant 
two-dimensional transfer effects upon observable parameters in this case. 

ii) Case II 

A greater range of variation in the solution can be obtained by varying both c and ß. We adopted e(x, z) = 
e0[l - 0.5c0 0012 cos (27rx/lr)] and ß(x, z) = ß0[l + 0.5c0 0012 cos Pttx/Z)], which give a caricature of possible 
effects of pressure fluctuations from a wave propagating in an exponential atmosphere. We considered cases with 
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(a) 

(c) (d) 

Fig. 3.—Source functions and observables for case I, defined in the text, with €0 = IO-3 and ß0 = 102. Both x and z are in km. 
(a) Contour diagram of I2(x, v), the 2D emergent intensity along the normal to the atmosphere, as a function of x and Av/AvD*. 
In this and all subsequent figures, the subscript 1 denotes the l^D solution and 2 denotes the 2D solution. (6) Contour diagram of 
log [*S2(jc, z)/Si(jc, z)] as a function of x and z. Solid contours denote positive values; dashed contours denote negative values, (c) 
Contour diagram of I2(x, v)//i(a:, v) as a function of x and (Av/Avd*) for radiation emergent normally from the atmosphere, (d) 
Variation of equivalent width (in Doppler units) as a function of position. Dashed curve, l^D solution; solid curve, 2D solution; 
square, horizontal average of l^D and 2D results; star, equivalent width from horizontally averaged source terms. 

€0 = 10“3 and 10"1, and ß0 = 1, 10, 102, and 104. Because ß is largest and € is smallest at the edges of the cell, 
the surface value of the source function will be smallest there, and the line strength the largest. 

As seen in Figure 4a, both the ID and 2D source functions have significant spatial fluctuations at the surface. 
The full spatial variation of the 2D source function is shown in Figure 46 and the ratio S2IS1 in Figure 4c. Again 
the 2D solution shows only a weak lateral variation. The emergent intensity from the 2D solution is shown in 
Figure Ad. The line profile has a pronounced ^-variation which yields the rather unusual spatial average shown in 
Figure 4c. The spatial variation of the equivalent width is shown in Figure 4/; the results from the l^D and 2D 
solutions are essentially identical, and further, the spatial average of W is the same for both solutions and is 
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(a) (b) 
log S2 (x,z) 

(c) X (d) 

Fig. Aa-d 
Fig 4 —Source functions and observables for case II, defined in the text, with e0 

== 10 1 and ßo :=: 104. Coding of curves and 
plots are as in Fig. 3. {a] RMS fluctuation of source function relative to its horizontal average, as a function of z. Dashed curve, 
ID solution; solid curve, 2D solution, {b) Contour diagram of log z) as a function of x and z. (c) Contour diagram of 
log [S2(jc, z)/Si(;e, z)], for antiphase variation of e and ß, as a function of x and z. {d) Contour diagram of /2(x, v) the emergent 
intensity from the 2D solution, as a function of x and Av/AvD* for radiation emergent normally from the atmosphere, (e) Horizontal 
average of the line profile. The HD, 2D, and horizontal averaged source-term results are indistinguishable. Ignore physical units 
stated in ordinate table, as arbitrary units were employed. (/) Variation of equivalent width (in Doppler units) as a function of 
position for antiphase variation of e and ß. (g-) Contour diagram of log [*S2(x, z)ISi(x, z)], for in-phase variation of € and p, as a 
function of * and z. Compare with Fig. 4c. (h) Variation of equivalent width as a function of position lor in-phase variation ot € 
and ß. Compare with Fig. 4/. 

almost indistinguishable from that given by the spatially averaged model. The differences are even smaller for 
X = 100 km. We find no important effects of two-dimensional transport upon the line profiles or equivalent widths 
in any of these cases. 

An interesting comparison is obtained by choosing the same e(x, z) but now setting 
j8(x, z) = j80[l - 0.5e0 0012 cos (2t7x/V)] ; 
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(e) (f) 

(g) 

4.500 

f 4.300 
< 

* 3.700 - 

3.500 - : 

0.00 2.50X101 5.00x10* 7.50x10* 1.00x10* 
X 

(h) 

here the fluctuations in e and ß are mathematically in phase but physically tend to work against one another. 
The €-variation predominates, and S is lower and W is greater at all boundaries than at cell center. As seen in 
Figure 4/z, the variation of W for the multicomponent model is qualitatively the same as in Figure 4/, but with 
much smaller amplitude. In contrast, the 2D solution yields practically no variation (it even shows a weak antiphase 
variation). This occurs because e is smallest where the line strength is smallest; hence the photon diffusion length 
is markedly increased, and the rise of S2 relative to Si is now large enough to almost obliterate the horizontal 
variation of S2 (see Fig. 4g). 

iii) Case HI 

In the analysis of the solar spectrum, one frequently encounters line profiles that have been modified by velocity 
fields. The questions of how to solve the transfer equation, and of the relation of observed line-shift and line- 
asymmetry parameters, must then be faced. As a simple example we have considered a periodic medium with 
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(a) 

X 

X 

(b) 

z 

Ap/Apq 

Fig. 5a-d 
Fig. 5.—Properties and computed results for case III, defined in text, with 0O = 104 and VsQ = 2. (a) Velocity field as a function 

of x and z; arrows give vector velocities, (b) Horizontal averages of source functions. Short dashes, Planck function. Solid curve, 
2D solution. Long dashes, ID (multicomponent) solution. Dot-dash curve, horizontally averaged source-terms, (c) Contour diagram 
of h(x, v), emergent intensity from 2D solution. Line of sight is normal to atmosphere, (d) Horizontal average of line profiles. 
Solid curve, 2D solution; dashed curve, l^D solution', dot-dashed curve, horizontally averaged source-terms with velocities treated 
in microturbulence limit. Note overestimate of velocity-field effects in latter case, (e) x-position of point at unit optical depth 
along ray with direction cosines (/u, y) penetrating out of atmosphere at horizontal positions x0, as a function of xQ and Av[j\vd*. 
(/) Same as (5e) for z-position of point at unit optical depth on ray. 

geometric properties and values of xc and B as specified above, for lines with € = \0~3, ß = ß0, and a velocity 
field of the form vz(x, z) = vz0 exp (0.001z) cos (2ttx/X) which is shown in Figure 5a. The velocity has a sinusoidal 
^-variation whose amplitude decays with increasing depth into the atmosphere. We treated cases with ß0 = 104, 
102, and 10, and vz0 = 1 and 2; these are labeled Illa-III/ as specified in Table 1. An extensive series of runs was 
made with different numbers of angle-points in order to determine how the solution is affected by the quadrature. 
In all cases we found that six points per octant gave essentially identical results to the choice of 12 per octant. 
The Eddington approximation (one point per octant) was accurate to about ± 107o in S for vz0 = 0 or 1, but 
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(e) (f) 

Fig. 5e-f 

deteriorated to errors of ± 20% in S for vzQ = 2. All the results displayed in the figures are based on a six-point 
quadrature. 

As was mentioned in § II, the Hermitian ray-integration technique showed decisive superiority over difference 
equations moving media. In particular, the solutions showed a precise symmetry around the point (x/Z) = tt/2, 
which is implicit in the form of vz(x, z), but which is not explicitly imposed in the computation. In contrast, the 
difference-equation solution failed to have symmetry around this point and exhibited unacceptably large oscilla- 
tions in S at successive x-points in the grid. Our experience suggests that of the two methods only the Hermitian 
method can be used when velocity fields are present. 

As is true for cases I and II described above, observable quantities from the l^D and 2D solutions are practically 
identical. As before, S2 can differ substantially from Su always in the sense of being much more constant as a 
function of x, but the detailed x-variation of the emergent intensities, equivalent widths, line shifts, and line widths 
from the two solutions are indistinguishable; hence the multicomponent (l^D) treatment suffices in this case. 
The depth variation of the horizontal average (S(x, z))* for the ID, 2D, and spatially averaged solutions in case 
III6 are shown in Figure 56. The maximum values of /2//i for the emergent intensities are 1.12, 1.68, 1.03, 1.11, 
1.01, and 1.02 for cases Illa-III/, respectively; these all occur at line center, and except for case III6 are negligible. 
The equivalent widths computed from the l^D and 2D solutions agree to within 2% for case III6 and to within 
1% or less for the other case. 

As can be seen in Figure 5c, the emergent line profiles faithfully indicate the vertical velocity field. Horizontal 
averages of the l^D and 2D profiles are virtually identical (see Fig. 5d\ but the effect of the velocity field on the 
line width is grossly overestimated in the spatially averaged solution. This shows that a treatment of velocity 
fields in the microturbulence limit exaggerates their effects ; conversely, if one deduces velocity field from calcula- 
tions using the microturbulence limit, one tends to underestimate their amplitude. 

TABLE 1 
Line-Shape and Line-Strength Parameters for Case III* 

ßo I'sO Zq Vz(z.q) Av1/2 §1/2 Zii2 Vsiziiz) 
Case (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Ilia  104 1 0.78 -290 0.75 0.42 5.40 -1000 0.37 
III6  104 2 1.54 -290 1.50 0.83 5.53 -1000 0.74 
lile...... 102 1 0.51 -745 0.48 0.38 3.75 -1040 0.35 
llld  102 2 1.01 -745 0.96 0.77 3.78 -1040 0.70 
lile  10 1 0.41 -960 0.38 0.36 2.75 -1040 0.35 
III/.  10 2 0.82 -960 0.76 0.73 2.77 -1040 0.70 

* Detailed properties of this case are specified in text. Frequency displacements and velocities are in units of the fiducial Doppler 
width Avd*. Depths are in km. Viewing angle is normal to atmosphere 0-t = 1.0, y = 0.0). 
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Detailed information on line-strength and line-shape parameters is given in Table 1. Each case is characterized 
by a choice of ß0 and vz0, listed in columns (1) and (2). Frequency positions of line center, Av0, and the half-intensity 
bisector, Av1/2, at spatial position = 0 (maximum upward velocity) are given in columns (3) and (6), and the 
full half-intensity width S1/2 is given in column (7). The physical depth z0 at unit optical depth at line center is 
given in column (4), and vz(z0) is given in column (5). 

From the Eddington-Barbier relation we expect that the emergent intensity at line center is dominated by 
contributions from depth z0; hence Av0 should very nearly equal vz(z0). We see that Av0 does quite accurately 
reproduce vz(z0), and that this equality is more closely realized for stronger lines ; that Av0 is always greater than vz(z0) 
follows from the fact that the intensity is not determined at exactly r = 1, but includes contributions from higher 
layers. A similar comparison can be made between the position of the half-intensity bisector Av1/2 and the velocity 
^(*1/2), where z1/2 (given in col. [8]) denotes the physical depth corresponding to unit optical depth at the frequency 
positions of the half-intensity points in the profile (i.e., at Av = Av1/2 ± i|8i/2|). Comparison of Ai/1/2 with tf2(z1/2) 
shows that good agreement is obtained for relatively weak lines, but that Avi/2 becomes systematically larger than 
^(*1/2) as the line strength increases. As pointed out by Kulander and Jefferies (1966), this results from a contri- 
bution of overlying layers, moving at larger velocities, to the line profile intensity ; one expects a systematic 
deterioration of the accuracy with which the bisector position reproduces the actual velocity as one uses points 
progressively farther from line center. 

The results described above all refer to a viewing angle normal to the surface of the atmosphere, i.e., ¡x — 1.0, 
y = 0.0. When one examines the structure obliquely, complicated projection effects can occur. To illustrate these, 
we show in Figures 5e and 5/ the spatial positions of the point at unit optical depth along a ray emerging at an 
angle with direction cosines (/x, y) as a function of x0, the ^-position where the ray emerges from the medium, 
and Av/Avd*, the frequency displacement from line center. The plots show that if we look at a given position on 
the disk then at different points in the profile we see to quite different physical positions (x, z) in the medium. 
These results emphasize the difficulty faced when one attempts to diagnose the velocity structure of the medium 
from observed line shifts, and demonstrate that simple techniques that associate a unique spatial point with the 
velocity field inferred from a profile are gross oversimplifications of reality, and may be untrustworthy. On the 
other hand, diagrams such as Figures 5e and 5/, when computed for specific solar-atmospheric structures, with 
realistic model parameters, offer the possibility of much-improved accuracy in the diagnostic technique. 

iv) Case IV 

An opportunity for significant two-dimensional transfer effects arises when there are both vertical and horizontal 
velocity components. In the one-dimensional solution for the source functions, is ignored (the direction cosine 
y having been suppressed); but given the ID source function, both vx and vz are taken into account in the l^D 
formal solution. We have chosen a velocity field vx = vx0 exp (0.001z) sin (Ittx/X) and 

= ^zo exP (0.001z) cos (Ittx/X) , 

which, as shown in Figure 6a, provides a caricature of an upwelling periodic medium. We again used the case 
I-III values of Xc and B and set € = 10"3, ß = j80- We considered the values ß0 = 104, 102, and 10, and vx0 = 
vzq = — 1 or —2. All results reported here were obtained using six angle points per octant. 

The source function ratio *S'2/*S'i shows an interesting dependence upon ß0. For ß0 < 102, the line thermalizes 
in the continuum, rather than being thermalized by collisions (e = 10“3). Thus the effect of accounting for both 
velocity components in the 2D solution is to increase the escape probability relative to the ID solution. Thus S2 
drops below and for cases with (ß0, |^0|) = (10, 1), (10, 2), (100, 1), and (100, 2), the minimum values for 
S^Si are 0.83, 0.79, 0.94, and 0.87, respectively. In these cases the 2D equivalent widths are greater than the ID 
equivalent widths, by about 370 for ß0 = 10 and about 1% for ß0 = 100. When ß0 = 104, the line thermalized 
by collisions above the point of continuum formation. In this case SySi > 1 because now the line shifts allow 
incident continuum photons from below to be intercepted. In these cases W2 < Wu with about a 5% difference 
for (ft), Kol) = (104, 2). 

As was true in case III, the x-dependence of line-shift parameters Av0 and Av1/2 and of the line-width parameter 
81/2 are virtually identical for the 2D and l^D solutions. Also, the spatial averages of the line profiles are nearly 
identical for both solutions, and again the microturbulence treatment of the velocity field in the spatially averaged 
solution yields much too broad a line profile. 

If viewed at normal incidence, the line profiles in this case are virtually the same as in case III. Viewed obliquely, 
one sees effects of both vz and vx. Again the line center displacement Av0 provides an accurate estimate of the 
line-of-sight projection of the velocity, v = ¡jlvz + yvx. A typical example is shown in Figure 6b \ by tracing 
the rays downward at the angles indicated to z0 = —270 in Figure 6a, one can readily verify the correctness of the 
line-shifts shown in Figure 6b. As was true in case III, the (x, z) positions of unit optical depth along the ray, 
shown in Figures 6c and 6d, are quite complicated functions of x0, the position of observation, and Av/AvD* in 
the profile; again a difficult diagnostic problem is faced when one attempts to infer the spatial variation of the 
velocity field. 
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Fig. 6a-d 
Fig. 6.—Properties and computed results for case IV defined in text, with ß0 = 104 and \ Vx0\ — \vz0\ = 2. (a) Velocity field; 

arrows give vector velocities. Rays with direction cosines 0¿, y) = (0.808, 0.577) are sketched emerging from the medium at x = 250, 
500, 750 and 1000 km. The horizontal line at z = —270 km is the locus of line center unit optical depth along these rays, (b) Line- 
center displacement Av0 (in fiducial Doppler widths) seen at a viewing angle with 0¿, y) = (0.808, 0.577) so that both vertical and 
horizontal velocity components contribute. Comparison with Fig. 5a shows that the shifts are precisely what would be expected 
from the velocity field at unit optical depth along the rays. Note that RD results {dashes) and full 2D results are nearly identical, 
(c) Same as Fig. 5e for case IV. (i/) Same as Fig. 5/for case IV. 

Again we conclude that the multicomponent (l^D) treatment of the problem is sufficient, though this may not 
be true for all possible choices of model parameters. 

b) Freestanding Slabs 
The effects of two-dimensional transfer are expected a priori to be much larger for freestanding slabs, where 

photons may leak out of (or into) the sides of the material as well as the top. We have considered a series of 
cases for a constant-density slab with Z = 5000 km, Z = — 30,000 km, xc = 4 x 10"5 (so that the total ^-direction 
continuum optical thickness is 0.2), B == 1, ß = 103, and with various values of e = €0, of vx0 in a velocity law 
vx = vx0 cos (ttx/X), and of /0, the intensity incident from below on both the bottom and sides of the slab. The 
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Fig. la-d 

Fig. 7.—Contour diagrams of 2D source function for freestanding slabs. Ordinate and abscissa are logarithmically spaced; see 
text for discussion. Figs. 7a-7/refer to cases Va-V/, respectively, as defined in Table 2. 

intensity from above, on both the top and sides, was set to zero. In both the x- and z-directions a logarithmic 
grid of the type shown in Figure 2 was employed in order to obtain an appropriate variation of optical-depth steps 
at the boundary surfaces. The graphs have been labeled in physical units, but are plotted on the logarithmic scale 
in order to show the edge effects clearly. The reader should note that in z the points at ±1.4 x 104 km, and in x 
the points at ± 1.5 x 103 km, are 103 km from the surface, so the graphs greatly expand the zones near the 
boundaries and compress the size of the central region of the slab. 

We considered series of models with e0 = 10“3 and 10“1 corresponding to effectively thin and effectively thick 
(static) structures, respectively. We chose 70 = 0, 1, and 100, corresponding to situations where (a) all radiation 
results from internal excitation within the slab, (¿) the slab is irradiated with a field comparable to the internal 
thermal source term, and (c) the slab is irradiated with a strong source from below (e.g., chromospheric La incident 
upon a prominence). For convenience in discussion, letter designations are assigned to the different cases treated, 
whose properties are specified in Table 2. Because of the large number of gridpoints in the (x, z) mesh, only a 
limited number of angle-points were considered in order to allow us to explore a large number of cases with 
reasonable computational economy. We found that the Eddington approximation (one angle-point per octant) 
gave results that agreed to within ± 107o with those obtained using three angle-points per octant for |tf*oL= 0 
or 1 ; for |r*0| = 2 the errors were ± 207?. All results quoted here are based on Eddington-approximation solutions. 

Results for static slabs are shown in Figures 7 and 8. In Figure 7, the two-dimensional source function is plotted. 
Figures la and lb show results for cases Na and V£, respectively. Here one finds that the source function decreases 
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Fig. le-f 

monotonically away from the slab center, and one sees large corner effects where the source function drops rapidly 
as a result of photon escapes in two directions. In case Va, which is effectively thin, S does not thermalize at slab 
center, whereas in case V6, which is effectively thick, it does. In Figures 1c and Id we show log S for cases Nc 
and Vd, respectively, where the slab receives unit intensity from below. In both cases the minimum value of S is 
attained at the top of the slab on the axis of symmetry, and a relative minimum region extends downward into the 
slab; this results from the inner material being shielded from the incident radiation. Again in case Vc the solution 
never thermalizes and the minimum at the top of the slab is much lower than it is for case W, which does thermalize 
throughout a large fraction of the volume. Results for cases Ve and V/, in which /0 = 100, are shown in Figures 
le anà If, respectively. Here the dominant effect on S is penetration by incident radiation; as the penetration 
occurs more efficiently when the destruction length for a photon is large, case Ye with c = 10"3 shows much 
higher internal excitation than case V/with e = 10"1. The incident radiation penetrates about one thermalization 
depth in from the boundary. 

Contour diagrams of the frequency and height dependence of the profiles are shown in Figure 8. These calcula- 
tions were made for a geometric configuration appropriate to a structure seen at the limb; that is, the line of sight 
penetrates normally through the slab, and does not intercept the photosphere on the other side. The emission 
seen is thus the result of internal excitation and incident radiation (if any) scattered by the material into the line 
of sight. The bottom of the slab is on the left in these plots, and the top is on the right. In cases Va and Yb 
(shown in Figs. 8a and 86) the central core shows a profile identical to the ID solution, and the intensity fades 
away at both the top and bottom of the slabs. At the center, one has a doubly reversed emission line, and at the 
upper and lower boundaries one finds an absorption feature. In cases Yc and Yd one has an extremely bright 
emission rim at the lower boundary. At the lower boundary and in the main body of the slab the profile is a 
doubly reversed emission feature. At the top boundary the line fades away and is a simple emission line. In cases 

TABLE 2 
Properties Assigned to Freestanding Slabs 

Case *0 

Ya. 
Yb. 
Yc.. 
Yd. 
Ye.. 
V/.. 
V^. 
Yh. 
Yi.. 
Yk. 
V/.. 
Ym. 

10"3 

IO"1 

10"3 

10"1 

IO"3 

io-1 

IO"1 

lO"1 

IO"1 

lO"1 

lO"1 

lO"1 

0 
0 
0 
0 
0 
0 

-1 
-2 
-1 
-2 
-1 
-2 

0 
0 
1 
1 
100 
100 
0 
0 
1 
1 
100 
100 
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4.50 

3.60 

o 2.70 à 
< 
à 
^ 1.80 

0.90 

0 
-I.! 

4.50 

3.60 

o 2.70 
<1 
à 
^ 1.80 

0.90 

0 
-I.5XI04 -I.4XI04 0 I.4XI04 I.5XI04 -I.SxiO4 -l.4x|04 0 I.4XI04 I.5XI04 

z z 
Fig. Sa-d 

Fig. 8.—Contour diagram of /2(z, v), emergent intensity along line of sight normal to freestanding slab, using 2D source 
function. Figures 8¿z-8/ refer to cases Ya-Vf, respectively. 

Ye and V/there is a bright emission rim at the lower boundary, and the profile is almost flat-topped. In the main 
body of the slab one sees a simple emission line that fades away toward the upper boundary. 

For an expanding slab (with the velocity field illustrated in Fig. 9) we find that if I0 = 0, the source function 
everywhere decreases throughout the slab because of the increased escape probability of photons; if /0 = 1, the 
source function is essentially unchanged because losses from the increased probability of escape are approximately 
compensated by penetration of the incident field; if /0 = 100, the source function rises because of increased pene- 
tration of the intense incident field. Contour diagrams of the spatial and frequency dependence of the profiles for 
cases Yg-Vm, whose properties are given in Table 2, are shown in Figure 10. Note that when 70 = 0 we obtain th 
expected result of a blueshifted absorption component that partially suppresses the blueward emission peak. 
When /0 = 1, a basically similar appearance is found, except that the absorption feature is weaker, and the profiles 
are almost flat-topped. For 70 = 100, the radiation scattered into the line of sight from the external irradiation 

(a) 
=0.000,/= 1.000) 

(b) 
=0.000,/= 1.000) 

4-50 rni i n itt in i|i i i ii i | i i i i i i|i i i i i i i m m m_ 

3.60 - 

2.70 

1.80 

0.90 : 

XIO4 -I.4XI04 0 I.4XI04 I.5XI04 -L5XI04 -l.4x|04 0 I.4XI04 I.SxiO4 

(O 
I2(z,i/|/I =0.000,/= 1.000) 

(d) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

8A
pJ

. 
. .

22
0.

10
0I

M
 

1020 MIMALAS, AUER, AND MIMALAS Vol. 220 

Fig. 8e-/ 

prevails over that generated internally, and one sees a blueshifted emission peak. The contrasting behavior in these 
cases shows that one must exercise care in attempting to infer velocity fields from observed profiles, for a naive 
interpretation of these profiles would lead to different velocity fields in each case, even though all of them result 
from a unique physical structure and velocity distribution. 

IV. CONCLUSIONS 

The solar literature abounds with statements about the potential importance of multidimensional radiative 
transfer. The method presented in this paper permits us, for the first time, to determine in a simple manner the 
validity of these statements in a routine way. The Hermite scheme is economical, flexible, and stable. In the form 
we have used it, it may be applied to essentially any two-level-atom problem in Cartesian coordinates, and general- 
ization to cylindrical or other geometries is straightforward. The method guarantees the diffusion limit and is well 
conditioned in the presence of velocity fields. It should be applicable in other contexts, such as reactor calculations. 

Our numerical tests show absolutely no evidence for the importance of two-dimensional radiative transfer effects 
in exponential atmospheres. In all cases we have found that a “multicomponent” model (i.e., the l^D solution) 

-1.4xio4: EEEHEEEEEEEEr 

-i.5xio*-r 
-2.5 x I03 -1.5 x I03 0 1.5 x I03 2.5 x I03 

X 
Fig. 9.—Velocity field for expanding freestanding slab 
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Z Z 

(c) 

z 

(d) 

z 
Fig. \Qa-d 

Fig. 10.—Contour diagrams of spatial and frequency dependence of intensity emergent normally from expanding freestanding 
slabs (cf. Fig. 8). Figs. 10a-10/ refer to cases Ng-Wm, respectively. Note that in Figs. 10e and 10/, several of the contours were 
unfortunately mislabeled; all contours labeled with values less than unity should have the value given increased by a factor of 100. 

adequately reproduces the emergent radiation field and, if anything, overestimates the response of the radiation 
field to fluctuations in the physical variables. While our investigation is, perforce, limited in scope, we feel it is 
unlikely that our conclusion is incorrect. Physically if the wavelength of the disturbance is greater than the scale 
height, lateral transport is unimportant and the multicomponent model is a priori valid; but if the wavelength is 
comparable or smaller than the scale height, then the lateral transport simply erases the effect of lateral inhomo- 
geneities. In neither case can we get a significant effect. The possible importance of 2D effects can now be tested in 
any well-posed problem, and the burden of proof now lies upon any assertion of their relevance. 

Two-dimensional transfer effects are likewise unimportant in the determination of macroscopic velocities in 
exponential atmospheres. The best diagnostic of this quantity appears to be the position of line center. 
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(e) (f) 

z z 
Fto. 10e-/ 

In our freestanding slab models we have found some evidence for two-dimensional effects at depths less than 
one thermalization length from the surface, but these boundary layers will be difficult to observe adequately. 
The emergent radiation field does show a large sensitivity to the strength of an externally imposed field. 

Portions of the work on this project by one of us (B. R. M.) were supported in part by a Danforth Foundation 
Fellowship and by NASA grant NGL 06-003-057 to the University of Colorado. 

APPENDIX A 

DIFFERENCE EQUATION REPRESENTATION OF THE 
TWO-DIMENSIONAL TRANSFER EQUATION 

In writing a difference equation representation of the differential equation 

fi2 d il du\ W d /I du\ ,d/l 0w\ 
X dz [xdzj x dz \x 0*/ 0* \X 

+ 
y2 d /I du\ 
X dx \x 0*7 

= w — (1 — £)J — (Al) 

we note two points : (a) The derivatives are to be evaluated along lines of constant x and of constant z. We thus 
introduce optical-depth increments Atu±1/2 = \T(xi9zj±1) - r(xi9Zj)\ and Atí±1/2J = |t(xí±1, zy) - t(xí9 z¡)\. 
{b) The derivatives in the cross-derivative term do not commute. 

A unique difference equation can be obtained if we represent the variation of u near (xi9 z;) by a product of 
parabolic Lagrange interpolation polynomials in At* and At2 on a nine-point stencil around the point under 
consideration. One finds 

2/x2 

(An,/-1/2 + ATj 
   r_jfu+i_ _ ui 

1 + 
1 \ + 

uu-i 1 
iJ + 1/2) L^Ti,y + l/2 \^Ti,j + ll2 Atíj_1/2/ ^Tíj_1i2\ 

2y2 Jh 
(^Ti-U2,j + Ari + 1/2>/) Atj 

¿+1 j+i 

±hL. _ „/_!  + 1 \ + 
+ 1/2,/ \&Ti-ll2J ^Ti + l/2,// ^Ti-l/2,yJ 

- W ¿i 2 — uu ~ ~~ èijBij > (A2) i'=i-i r=j-i 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

8A
pJ

. 
. .

22
0.

10
0I

M
 

No. 3, 1978 

where 

TWO-DIMENSIONAL RADIATIVE TRANSFER 1023 

and 

at±l,f = ±^Ti=Fl/2,i7[^Ti±i;2,y,(^Ti-lí2,í' + ATi + l/2,i')] > 

air = —(«i + i.í' + «I-I.J') > 

ßi',j±l = ±^Ti',iTl/2/[^T¡,,í±l/2(^Ti',y-l/2 + ATi',í + l/2)] > 

ßi') = —(ßi'j-1 + ßf,i+l) • 

(A3) 

(A4) 

(A5) 

(A6) 

Here (/ - 1 < /' < / + 1) and (7 - 1 < j < j + 1). , j m,j 1 A 
In equation (A2) the terms of the form and (av^iruvr) represent {dlidu/dr^ydr^ and 

(dUduldr XVdrX, respectively. The elimination scheme used to solve the system is virtually identical to that 
described in the text except that Djj±i are void and Djj is diagonal. One-sided differences are employed at exterior 
boundaries and corners. 

APPENDIX B 

EVALUATION OF OPTICAL DEPTH INCREMENTS 

In a stellar atmosphere, the characteristic variation of x is an exponential rise with depth, and a successful 
integration formula must address this fact. We assume that In x is a piecewise linear function of the path-length 
s in the interval (s0, Sj), i.e., 

Then 
In x = In Xo + On xi ~ ln XoXs - 5o)/(^i - ¿o) = ln Xo + ßiß - s0)IAs. (Bl) 

At Í X<* = (xi - Xo)Aslß, 
"Sn 

(B2) 

which is applicable if ß is not too small. For ß « 1, an economical approximation can be derived using the Euler- 
Maclaurin summation formula which yields 

Í xds ~ iAi(xi + Xo) - 72^2(Xi' - Xo') + Aj4(xi” - Xo"')/720. 
* Sn 

But X = (ßlAs)x; hence 

At = 4Aj[xi + Xo — ißiXi ~ Xo)(l — 6oß2)] > 

(B3) 

(B4) 

which is good to the accuracy of the computer word for 0 < 10 2. 
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