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Abstract-An iterative scheme has been developed for the solution of the non-LTE line radiation 
transfer problem. The method uses an approximate operator that is deliberately chosen to be local 
so that it can be easily extended to multidimensional geometry. The difference between the formal 
and approximate solutioos is used as a driving term for the iterations. IO one-dimensional, semi- 
infinite and free-standing slabs, the technique is found to be very fast, robust, and applicable to a 
large class of problems. 

1. INTRODUCTION 

While methods exist for the direct solution of the one-dimensional, non-LTE line-transfer 
problem (see the discussion by Mihalas l of the techniques by Feautrier2 and Rybicki3), the 
development of a new general iterative technique for this problem is of great potential 
interest. The direct methods require the solution of large systems of linear equations; 
therefore, they are relatively expensive in both computer time and computer memory. The 
iterative method derived here uses an approximate operator that does not require the solution 
of any linear systems, not even banded systems. This can significantly reduce computer 
costs below those of the direct methods. 

Iterative approaches are particularly advantageous when the radiation fields in a number 
of transitions must be found self-consistently. The equilivent two-level atom (ETLA) ap- 
proach for multi-level atoms might then be used. A good guess for each radiation field is 
available from the previous ETLA cycle and can be used as a starting guess for the iterative 
solution in a given transition. In many problems the desired accuracy will only require a 
few iterations. 

The difference between direct and iterative solutions is even greater in two dimensions. 
Direct solutions4 and Monte Carlo simulations can be used, however, the computer re- 
quirements and computing costs are quite restrictive. Buchler and Auer 5 devised an iterative 
method that uses an operator which is a combination of an escape probability solution and 
a diffusion term. The result is a tridiagonal system of equations in one-dimensional problems; 
however, in two dimensions their operator introduces two nonzero diagonals far from the 
main diagonal. In the present paper we derive a local, i.e., diagonal, iterative technique for 
one-dimensional problems that remains diagonal when generalized to two-dimensional prob- 
lems. The philosophy of Cannon6~7 to use low order quadratures as approximate operators 
is here pushed to the limit of local operators. Preliminary results indicate that this approach 
also works well in two-dimensional slabs. 

In the next section we define the problem of non-LTE line radiation transfer. Then in 
$3 we discuss iterative methods in terms of lambda iteration. Our new operator and its 
performance is presented in section 4. A method which works very well in accelerating the 
convergence of the iterations is given in $5 and our conclusions are in $6. 
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2. DEFINITION OF THE PROBLEM 

The class of radiation transfer problems which we are addressing are those in which 
the scattering term in the source function depends only on an integral of the radiation field 
over all directions and frequencies. Examples of such are the coherent scattering problem, 
the two-level non-LTE line transfer problem with complete redistribution, and the non- 
LTE continuum formation problem. For the sake of definiteness, we will present our 
technique as it applies to the non-LTE line problem. 

We follow the notation of Mihalasl (Chapter XI). For simplicity, in the examples 
presented, we assume a uniform medium so that the thermal source term, B, the frequency 
integrated line opacity, x, and the line profile, +x, which is normalized to have unit area, 
are all constant. Frequency is measured as the displacement from line center in Doppler 
units, x. In slab geometry, the spatial coordinate z is replaced by the optical depth r defined 
by dr = -xdz. 

In the case of a two-level atom without continuum, the source function is given by 

S(T) = (1 - e) T(T) + eB , (1) 

with 

J(T) =; s +CC s +1 

dx gJx dp I& T) 9 _ 
m -1 

where e is the thermalization parameter and p is the cosine of the angle from the slab 
normal. The specific intensity, I&, r), is given by the solution of the radiation transfer 
equation: 

!-da 1,tb T)/JT] = +x [I,(j.L, 7) - s(T)] . (3) 

It is convenient to transform variables to the symmetric average of the specific intensity 

ux(k T) = [I,+., T) + I,(-/& T)]/2 . (4) 

Then Eq. (2) becomes 

J(T) = s +- dx +x s,’ dp uxtp, 7) -03 

(5) 

and the radiation transfer equation, Eq. (3), can be rewritten as a second order differential 
equation (see Mihalas I, Chap. VI), namely, 

a2uxtl.L, d/J 7; = U,(j.b, 7) - s(T) , (6) 

where dr, zz - x$,dz/p. This differential equation can be put into numerical difference 
form using a simple 3-point scheme or using the more accurate Her-mite scheme developed 
by Auer.” Such methods discretize the continuous variable U(T) into a set of equations for 
tlj, i= 1,2,...,N, corresponding to the values of u at the N optical depth points, TV, in terms 
of the source function at those points, Si. The variables p and x are likewise discretized 
using quadrature points and weights appropriate for the evaluations in Eq. (2). For most 
of the examples presented in this paper, we have used the Hermite method to solve the 
transfer equation but other methods including those based on integral equations could have 
been used. 

Given a source function, S(T), Eq. (6) can be solved explicitly one frequency-angle 
point at a time. This will yield the u,@, T) values to be substituted into Eq. (5) to determine 
the mean intensity. This procedure is called a formal solution and can be represented by 

T(T) = h [s(T)] . (7) 
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Although A is never assembled as a matrix operator when solving real problems, for the 
following sections it will be necessary to compute A as a matrix in order to analyze its 
properties. 

The full solution of the non-LTE line transfer problem is formally reduced to the 
simultaneous solution of Eqs. (1) and (7), which can be expressed in the combined form 

S(T) = (1 - l ) h[S(r)] + eB . (8) 

All the slabs analyzed in this paper will be characterized by their total optical depth, 
T, and the coarseness of the optical depth grid which is logarithmically spaced symmetrically 
about the slab midplane. We define the number of mesh points used per decade in optical 
depth as 6. All angle integrals use 3 Gaussian quadrature points per quadrant and all 
frequency integrals use enough frequency points to reach a point in the line profile wing 

where the slab becomes optically thin. 

3. AN ITERATIVE METHOD 

A straightforward iteration (the so-called lambda iteration) is of the form 

Sri+++ = (1 - E)A[S”] + EB , (9) 

where Sn is the n th iterate. It has extremely slow convergence properties I for optically thick 
slabs. The object of this paper is to devise an alternative iteration technique. 

Cannon6s7 has proposed a general iteration procedure of the form 

S”+’ = (1 - e)A*[P+‘] + (1 - e)(A - A*) [S”] + E B , (10) 

involving an intermediate operator A *, which he chose to be a A operator evaluated with 
fewer angle-frequency quadrature points. The difference between the formal A solution and 
the approximate A* solution serves as a lagged driving term on the right hand side. The 
critical point about the A* operator is that it is implicit and, therefore, mitigates the 
fundamental difficulty in classical lambda iteration, namely, the slow propagation of in- 
formation through the grid. Clearly, A* must be chosen carefully. The desirable properties 
for A* are: (a) it is simple enough to be computed easily and cheaply, and (b) it results in 
a rapid and stable convergence to the correct answer. 

Scharmer 9 has proposed variations on Cannon’s approximate operator technique based 
on core saturation models. lo His approach generates matrices that are almost upper tri- 
angular in one-dimensional problems. This produces a very good approximation to A which 
is relatively simple to use. The main disadvantage of Scharmer’s method is the difficulty of 
generalizing it to multidimensions. Such a generalization would be much more difficult than 
extending the banded system proposed by Buchler and Auers to multidimensions. We 
should note that other schemes i”,ll have been developed to get around the inefficiency of 
classical lambda iteration that use physical models such as the core saturation approximation. 

A diagonal matrix is the only form that A* may have and still guarantee simplicity 
in the structure of the implicit equations represented by Eq, (10). It is the purpose of this 
section to show that the choice of a diagonal operator is possible, easily computed, and 
yields an iterative method which converges fast enough to be useful. Equation (10) may be 
solved for the advanced value of the source function 

Sn+’ = [l - (1 - e)A*]-’ [(l - e)(A - A*)&” + E B] . (11) 

Since A* will be diagonal, this will actually be a scalar divide and we will find it convenient 
to represent A* as a depth dependent function A*(T). In order to analyze the iteration 
scheme, we rewrite Eq. (11) as 

S”+‘(T) = A@‘(T) + E B(r)l[l - (1 - e)A*(r)] . (12) 
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where 

A c [I - (I - &I**]-* (1 - e)(A - A*) . (13) 

The matrix, A, of Eq. (13) is the amplification matrix and its properties will determine 
the properties of this iteration scheme. The error vector for each iteration can be expressed 
in terms of the eigenvectors of A and asymptoticaly the error will vary as (h,)“, where 
h, is the eigenvalue of A with the largest magnitude. If A, is greater than unity, then 
the iterations will diverge. If all eigenvahtes are less than unity, the iterations are guaranteed 
to converge to the correct answer. The smaller the value of h,, the faster the iteration 
will converge. 

The case with A* E 0 reduces to the classical lambda iteration. The maximum 
eigenvalue in this case with a Doppler profile is 

LX = (1 - E) (1 - T-1) . (14) 

Clearly, for thick, strongly scattering problems with T >> 1 and E << 1, the value of 
h, is much too close to unity for convergence in a practical number of iterations. As we 
will show below, including even a simple implicit A * operator in the iterative cycle reduces 
A, sufficiently to permit the general use of the iterative scheme given by Eq. (11). 

The requirement that our operator be a diagonal matrix led us to analyze the simple 
local form 

A* = A*(T)I = [l - &&)]I , (1% 

where I is the unit diagonal matrix. Here p(r) is the probability of photon escape from 
optical depth T and is given by the expression ’ 

where T is the total optical depth of the slab. Figure 1 shows the variation of lh_l with 
fi for a slab with T = 20000, e = 10 -6, Doppler line profiles, and three different mesh 
sixes. This figure shows that the maximum eigenvalue moves from one solution to another 
at the minimum value for h,. Unfortunately, this transition point is grid sensitive. With 
a course grid in optical depth, say 3 points per decade ((! = 3), the minimum value of A, 
is smaller than if a fine grid is used. Thus iterations done with a course mesh can converge 
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Fig. 1. The absolute value of the maximum e-igenvalue, A,, is shown as a function of the fl 
parameter in Eq. (151, for a slab with T = 2OC00, log(e) = -6, and three values for the number 

of points per decade, f, as shown. The dashed limes are negative in value. 
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Fig. 2. The maximum eigenvalue is shown as a function of the destruction probability, e, in a slab 
with Doppler profiles, T = 20000, /3 = 3.111( -4.447 in Eq. (1% and 5 values for 4. 

faster, as well as being faster to compute. The value of j3 which gives the smallest h, is 
a linear function of e: fi = 3.111[ -4.447. 

Using the optimum value of p, Fig. 2 shows how A, depends on E, the destruction 
probability. These values are all significantly smaller than Eq. (14) gives for classical A 
iterations. For small values of E, the amplification matrix and h_ become independent of 
E. For large values of E, the eigenvalues decrease as the problem becomes more tightly 
coupled to the thermal source B. This effect is partially a result of the (1 - E) factor in 
the amplification matrix, Eq. (13). For very fine optical depth grids, the eigenvalues go 
asymptotically to 1. 

4. A NEW ITERATIVE METHOD 

The choice of A * which yields the absolutely minimum value for A, is computationally 
formidable, but a set of values which is close to optimal is simply the diagonal of A. That 
this yields eigenvalues significantly smaller than unity can be shown by using Gerschgorin’s 
theorem. I2 The theorem assures that if we subtract off the diagonal, then the largest 
eigenvalue is bounded by the sum of the off diagonal elements of the rows of the matrix. 
Since the elements of A should all be positive and the sum of any row is less than unity 
in magnitude, a little analysis will place limits on the value of A,,,. 

The bound set by Gerschgorin’s theorem can be stated in terms of the amplification 
matrix as 

h max 5 maximum(ZjlA vl), for any i , (17a) 

or 

Lax 2 maximum{ [l - (1 - E)A*(Ti)]-l (1 - e) [X,1 Avl - A*(ri)] 1 . (17b) 

For convenience we define the vector L(T) to be the result of a formal solution with the 
source function everywhere set to unity, i.e., L(T) z A[S(r) = 11. We can then replace 
the summation in Eq. (17b) by L(T) and define 

A (7) - (1 - E)[L(T) - A*(T)]/[ 1 - (1 - e)A*(r)] . (18) 

Then one can restate the limit on eigenvalues in terms of this depth dependent function as 
h _ I maximum of A(T). If small optical depth steps are taken near the boundaries of 
thick slabs, for example at T = 0, then A*(O) =: 0, L(O) = 0.5, and A (0) = (1 - ~)/2. 
Therefore, boundaries do not appear to give any difficulties in obtaining reasonable con- 
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vergence rates. At large depths, the A matrix becomes diagonally dominant and the upper 
limits on A, from these regions go to zero. Thus subtracting off the diagonal completely 
avoids the problem of propagation of information through thick layers which is so disastrous 
for the classical lambda iteration approach. 

In practice, we do not want to explicitly calculate A in order to subtract its diagonal, 
because calculating A requires N formal solutions. Therefore, we need a quick and accurate 
method for estimating the diagonal of A. This can be done by examining the difference 
equation form for E!q. (6). The Hermite difference equation requires knowledge from three 
points: Ui_l,Ui, Ili+i* Si-iISi,Si+1. Rather than solving the tridiagonal system of equations 
in order to determine ui (and all the other u), we found that a good approximation is to 
set 

Si = 1, Si*i = 0 2 (1%) 

utl = 24 exp[ -+*(ri - ri_l)/p] , (1%) 

and 

* 
ui+l = Ui* exp[ -+x(ri+i - rj)l).L] . (19c) 

With these substitutions into the difference equation form for Eq. (6) a local algebraic 
equation is obtained for u{? which can be inserted into 

s +CC 1 

A$ = A* = dx 4x dpu,+ . 
--m 

At the boundaries, substitutions similar to those of Eqs. (19) are made into the difference 
equations used for the boundary conditions. This calculation gives a good estimate of the 
ith diagonal element of A for the same computer cost as evaluating the escape probability 
in Eq. (16). This method for determining A* is somewhat analogous to the escape probability 
formalism of Eqs. (15) and (16). 

Figure 3 shows the maximum eigenvalues of the amplification matrix when Eq. (20) 
is used with Doppler line profiles. The eigenvalues for small E are nearly identical to those 
in Fig. 2, while for large E the eigenvalues are smaller and therefore better. Subtracting a 
deliberately chosen approximation to the matrix’s diagonal is superior to parameterizing 
the escape probability function. The only trend not shown by Fig. 3 is that the eigenvalues 
decrease for thin slabs. 

The big advantage of this result over that of the previous section is that good eigenvalues 
can be obtained without an adjustable parameter. Given the optical depth, angle, and 
frequency grids, A* is calculated automatically to be consistent with the A operator. 

0.8 r 
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Fig. 3. AS in Fig. 2, except that Eqs. (19) and (20) are used for A*. 
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The dependence of A,, on the coarseness of the spatial mesh can be intuitively 
understood in terms of communication along the computational grid rather than in physical 
optical depth space. In a pure A iteration, communication of the solution propagates on 
the order of one optical depth per iteration. Thus, problems with large thermalization depths 
require large numbers of iterations. Use of the A* operator subtracts an analytic solution 
that mimics the true solution’s value locally. Since A* is moved to the left hand side of the 
equation, it is implicit in the solution for the next iteration values. Therefore, information 
is no longer limited to propagating on the optical depth scale, but is instead limited to 
propagating on the discrete grid. With a fine grid, the information must go through more 
points in order to propagate the same distance in optical depth; therefore, the eigenvalues 
are larger with a fine grid. 

The usefulness of the technique does not depend on the type of line profile. For example, 
Lorentz profiles were used calculate the eigenvalues shown in Fig. 4. The general behavior 
is similar except that the eigenvalues for a Lorentz profile are smaller than for a Doppler 
profile and are bounded away from unity in the large 4 limit. Voigt profiles produce 
eigenvalues that are intermediate between Doppler and Lorentz. 

For comparison, the results from a grey atmosphere (one frequency point) calculation 
are shown in Fig. 5. The grey case is relatively more difficult than the line transfer problem 
and, as shown in Fig. 5, eigenvalues are larger that in the Doppler case. The approximation 
to the diagonal of the A matrix, given by Eq. (20), has errors large enough for some values 
of E and T to cause divergence of the iterations for the Her-mite equations, even though 
Eq. (17) guarantees convergence if the true diagonal is used. The ordinary 3-point difference 
equations, which are second order accurate, are more strongly diagonally dominant and 
can be used in this iterative scheme through out the range of parameters shown in Fig. 5. 
The fact that the present technique solves the grey problem, which is pure coherent scattering, 
shows that it is not a disguised form of the core-wing approximation. 

The differences in the values of the eigenvalues among the different profile shapes and 
the grey case are caused by the denominators of Eqs. (13) and (17). This factor goes to 
e-l at large optical depths, where A* goes to unity. Therefore, the numerators must go 
accurately to zero. Just as the variation of the escape probability with optical depth changes 
significantly with different line profile shapes, so do A*(r) and A (7). The variation of A (7) 
with optical depth for the three cases is shown in Fig. 6. The peak values on the three 
curves are 0.994, 0.89, and 0.74, while the actual maximum eigenvalues are 0.91, 0.84, and 
0.65, respectively. The location and width of the A (7) function are related to the thermal- 
ization properties of the problem. 

A very interesting feature of Fig. 6 is that the peaks where A(T) is maximum shift in 
position only slightly as E, T, [ is varied. All slabs thicker than about 50 optical depths 
have nearly identical eigenvalues and convergence properties. A semi-infinite slab is not 
worse than a slab of 100 optical depths. Again, this is due to the fact that at large optical 

1.0 I I 1 1 I 
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Fig. 4. As in Fig. 3, except that Lorentz profiles are used in a slab with T = 2 X 108. 
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Fig. 5. As in Fig. 4, except that a grey opacity is used with simple 3-point differences. 

depths the A matrix becomes nearly diagonal. Therefore, adopting a diagonal operator is 
an excellent approximation at large 7. 

How does this iterative technique work in practice? Figure 7 shows the convergence 
of this iteration method for the case of T = 2000, E = 0.001, and 6 = 4. The convergence 
is stable and monotonic as is expected from our knowledge of A,. Unfortunately, this 
operator [Eq, (20)] provides an initial guess that is far from the final answer and this large 
value of A, causes the convergence to be somewhat slow. The latter problem will be 
addressed in the next section. The first problem can be reduced considerably by using a 
simple, first order escape probability solution to estimate the source function 

S(7) = EB(d)l{ 1 - (1 - E)[l -p(7)]) * (21) 

Figure 8 shows the result when this modification of the method is applied to the same 
calculation as shown in Fig. 7. Now the initial guess is very good at large optical depth 
and only the surface layers are left to converge. The same case calculated with a Lorentz- 
profile would converge much faster. 

If we were solving this radiation transfer problem as a coupled set of linear equations, 
this A* iteration procedure would look exactly like Jacobi iteration. However, we are not 
solving this as a matrix problem. We never evaluate or use the full A matrix. In order to 
emphasize this fact, we can rewrite Eq. (12) as 

[ 1 - (1 - EM*(T)] S”+‘(T) = (1 - E) [%--J*“(T)] + E B(7) , (22) 

1.0 
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Fig. 6. The function A(T) from Q. (17) is shown for three CBSeS. 
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Fig. 7. The mean radiation field as a function of optical depth is shown for 20 iterations in half of 
a symmetric slab. The slab parameters are: Doppler profiles, T = 2000, L = 0.001, and E = 4. 

where z”(r) is the n th formal solution of Eqs. (5) and (61, and 3 *“CT) is given by 

T*“(r) = A*(T)+!?“(T) . (23) 

After using E-q. (21) for an initial guess, both 7” and 7 *O can be calculated. This procedure 
defines all terms on the right hand side of Eq. (221, and this equation can then be solved 
for S’(T). With this new source function, new J’s can be calculated and the cycle repeated 
until convergence is obtained. The function A*(T) needs to be calculated only once, before 
the iteration cycle begins. 

5. AN ACCELERATION METHOD 

In order to improve the rate of convergence, Buchler and Auers proposed the use of 
a very powerful acceleration method developed by Ng, l3 the three-point version of which 
we describe here. We consider an iteration of the form x”+’ = F(x”). This is exactly the 
form of Eq. (22) where the vector x* denotes S"(T) on the grid points. 

We assume the iteration scheme is linearly convergent and we accelerate that conver- 
gence by adopting a linear combination of three successive iterations as follows: 

1 

10-I 

T 

IO-2 

x* = (1 -a -b)x”-’ + a xne2 + b xnm3 (24) 

10-J IO-’ 1 10 102 10’ 

Optical Depth 

Fig. 8. As in Fig. 7, except that Eq. (21) is used for an initial guess. 
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and, thus, 
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F(x+) = (1 -a 4)x” + a ~“-1 + b ~“-2 . (25) 

The two unknown constants a and b are chosen to minimize the quantity 

N 

R= 1 i=, [x? - F(x?)]* wi , (26) 

where W has been introduced as a weighting vector. This procedure takes a general vector 
and its next iteration’s value, and minimixes the difference between them. The result is the 
linear set of equations 

aA, + bB, = C, , Wa) 

aA, +bB,=Cz , Wb) 

where 

N 

Al = z (Xl - 2.X;-1 + x;-2)2 wi , 

i=I 

N 

B, = 1 (xy - q-1 -xl-2 + x7-3) wi (x; - 2xp + xi”-*) ) 

i=l 

A,=B, , 

N 

B2 = z (x; - xy-l -x7-* + x7-3)*jfri , 

i=l 

N 

c, = x i=l (xy - 2xp + xy-2)(x; - xy-‘)rq , 

N 

c* = x i=l (xy - x7-1 - xy- * + x7-3)(x; - xp)Fq , 

(28a) 

(28b) 

(28~) 

(28d) 

(28e) 

(280 

which can be readily be solved for 

a = (C,B, - C,B,)I(A,B, - A,B,) , 

b = (C2-4, - C,A,)I@,B, - -43,) . 

(2%) 

(2%) 

The iterate x” is then replaced by the extrapolated value 

x* = (1 - a - b)x” + a x”-l + b x”-* , (30) 

which follows from Eq. (25). In principle, this accelerated vector can be calculated after 
the first four iterations, and after every following iteration. In practice, after the first 
acceleration, it was found desirable to calculate three new iterations before again using Ng’s 
acceleration technique. Otherwise, this technique may not have enough independent infor- 
mation to form a good extrapolation to the solution. 

The use of proper weighting is very important. In problems with small values for E, 
7 (7) will vary greatly and, unless properly weighted, regions of small7 will not be adequately 
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Fig. 9. As in Fig. 8, except that Ng’s acceleration is used. 

treated. We have found that the best weighting to use for transfer problems is W(T,) = 
[r”(rJ] -l, where fn is the current iteration value. 

Figure 9 shows the application of this acceleration method to the problem presented 
in Fig. 8. After the initial four iterations, the accelerated solution jumps to within 2% of 
the final solution. This is a very typical example and shows that the combination of a 
relatively slow but stable iteration technique coupled with Ng’s acceleration provides a 
robust method. The effective eigenvalue of this combination is near 0.4. For comparison, 
Scharmer’s effective eigenvalue of 0.2 requires the solution of a matrix system much more 
complicated than our diagonal operator. The acceleration method presented here compen- 
sates for the simplicity of the diagonal A*. 

6. THE METHOD’S ROBUSTNESS AND CONCLUSIONS 

In the region of parameter spaced spanned by 20 I T, -9 I log(r) I - 1, and 3 I 
( 5 10, we have thoroughly studied the behavior of the maximum eigenvalue of the 
amplification matrix, A msx, for Doppler and Lorentz profiles. At representative points, we 
have done the iterative solution of the line radiation transfer problem in order to confirm 
the convergence properties. The combination of using the A* which approximates the 
diagonal of the A matrix [Eqs. (19) and (2011 and Ng’s acceleration worked well in all 
cases. 

Linear or quadratic variations of the thermalization parameter, E, with optical depth 

change A,,, only slightly. The important values of E are those near the maximum of A (7). 

‘\ 
10-l 

b , , ,,,,,,, , , &__/ 
I I I I I ,,,, I I I , , ,, 

10-Z IO-' I IO IO' IO' 

Optical Depth 

Fig. 10. As in Fig. 9, except that the velocity specified by Q. (31) is used. 



442 G. L. OLSON et al. 

Variations in the thermal source, B, do not enter into the amplification matrix and thus 
can not affect the eigenvalues or the convergence properties. 

Complications to the radiative transfer problem, such as variable line profiles or velocity 
fields, can be treated in the same way as presented here. As long as the numerical difference 
equations used to solve the problem are an adequate representation of the formal solution, 
approximations such as in Eq, (19) can be used to calculate an estimate to the diagonal of 
the A matrix. For example, Fig. 10 shows a calculation with a symmetric non-monotonic 
velocity field given by 

u(t) = -2 sin (log,d)/(l + tljZ) , 

where t = minimum (7, T - T). This velocity law is similar to one presented by Scharmer.9 
The one possible problem with this iterative technique might be its grid sensitivity. It 

is not always possible to choose the optimum grid for every line transfer problem. Therefore, 
we experimented with using different mesh refinements in different parts of a problem. We 
concluded that the important region is from optical depth 1 to the thermalization depth, 
just as one could predict from looking at the plots of A (7) shown in Fig. 6. The structure 
of the grid at the surface or deep inside the slab had no effect on h,. The technique has 
been analyzed here with a logarithmically spaced symmetric grid in order to simplify the 
analysis, but the technique is not limited to this grid structure. The finest grid structure in 
the first thermalization depth determines the largest eigenvalue. 

Because of its simplicity and robustness, the technique developed in this paper looks 
very attractive. In terms of computer codes, this method with only formal solutions to 
evaluate is much simpler than solving the problem with either the Feautrier* or Rybicki3 
technique. Its purely local nature gives it a diagonal matrix representation that is still 
diagonal in multidimensional geometry. Therefore, this simplicity is retained in higher 
dimensions. Preliminary results show that the iterative technique works as well in two 
dimensions as it does in one. 
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