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Abstract. Methods for the solution of non-LTE partial fre-
quency redistribution (PRD) radiative transfer problems are pre-
sented. By explicitly treating the partial frequency coherence,
convergence difficulties caused by using a Complete Redistri-
bution Approximation are completely overcome. A new core—
wing treatment of the redistribution both avoids the explicit so-
lution of the frequency coupled system, and permits the use of
simple Approximate Operator Iteration to solve PRD problems
extremely efficiently.
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1. Introduction

Partially coherent scattering can have important effects on the
formation of strong resonance lines in stellar atmospheres. De-
tailed studies of the mechanisms for photon emission and ab-
sorption leading to the frequency redistribution functions can be
found in the works of Hummer (1962) or, more recently, Omont
etal. (1972).

The effects of frequency redistribution can strongly mod-
ify computed line profiles. Inclusion of a correct representation
of scattering processes in numerical radiative transfer computa-
tions began with Hummer (1969). This work showed the impor-
tance of partial frequency redistribution (PRD) in the modelling
of resonance lines, especially far from the Doppler core where
photons scattering is almost coherent. Rapid development of
computing resources in the 70’s allowed the application of ra-
diative transfer including PRD to the explanation of the observed
profiles of strong solar resonance lines. Among other studies (for
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areview, see Linsky 1985), we can mention the work of Shine et
al. (1975), who demonstrated that PRD is needed to reproduce
the limb—darkening (at all wavelengths) of the chromospheric
Ca11 K line profiles. PRD likewise plays a crucial role in the
modelling of resonance lines formed in quiescent prominences
(e.g. H1 Lya), where the scattering of chromospheric radiation
is the main source of emission in these structures (Heinzel et
al. 1987; Paletou et al. 1993). Partial frequency redistribution
effects should also be included in other astrophysical models,
for instance, quasi—stellar objects HI Lya emission, as pointed
out by Avrett & Loeser (1988), the modelling of Fe 11 and Mg 11
resonance lines in active galactic nuclei (Collin—Souffrin & Du-
mont 1986), and the H 1Ly albedo of giant planet’s atmosphere
like Jupiter (Ben Jaffel et al. 1988).

In the present article, we introduce new approximate op-
erator techniques which permit the efficient solution of PRD
problems. These new methods are presented, in Sects. 4 and
5, in the context of the two-level atom problem. Our purpose
is to overcome the limitations of Scharmer’s approach (1983).
That numerical procedure, while providing a fast and easy way
to treat some PRD problems, is known to fail at large frequen-
cies (more than, say, 100 Doppler widths from line center) in
PRD-Ry; (coherent scattering in the atom’s frame, see Hummer
1962), if the slab remains optically thick at these frequencies.
This is due to the fact that outside the Doppler core the scatter-
ing becomes quasi—coherent, which is obviously very far from
the physical assumption of non—coherence underlying the com-
plete redistribution (CRD) approximation. The approach advo-
cated by Cannon et al. (1975) and Scharmer (1983) which uses
the CRD approximation over the entire line is poor in the wings,
and, indeed, does not converge in the extreme line wings. In
Sect. 4, we show that this difficulty is completely overcome by
explicitly treating the local partial coherence of the scattering
process. In Sect. 5, we present a faster, but equally robust method
which uses the CRD approximation in the line core and, coher-
ent scattering for wing frequencies. This later method, which
is based on approximate operators for both the frequency re-
distribution and the radiation transport completely avoids the
solution of large systems of simultaneous equations and is the
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clear “method-of-choice” for the solution of transfer problems
involving PRD.

2. PRD scattering by a two—level atom

We treat here the case of a two—level atom with a background
continuum, and partial frequency redistribution. For notational
simplicity we shall not write the optical depth dependence of
the quantities explicitly.

The monochromatic source function .S, can be expressed as

o

r
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where z is the frequency measured from line center in Doppler
units (z = Av/Aup), ¢, is the absorption profile (we shall use
a Voigt profile for all computations refered hereafter), B the
Planck function and r the ratio of continuum to line opacity.
The two—level atom line source function Sj,, is given by
Sie =1 —€)J, +€eB )
where ¢ is the collisional destruction probability and J, the
PRD scattering integral. This formalism is equivalent to the CRD
case except that, in PRD, the scattering integral is frequency
dependent.

Following the Jefferies’ notation (1968) and assuming
isotropic scattering, let us define g, = Rz, /¢, where Ry,
is the angle—averaged redistribution function and ¢, the line
absorption profile. The mean PRD intensity is

T, = / Gar Jurd! 3
with

1
Jo=g / Lopdp @

being the angle—-average of the specific intensity I, (u is the
cosine of the angle from the slab normal). The formal solution
of the radiative transfer equation can be stated as

Jz = Am[S:c] o)

We seek to find a numerical scheme such that, given an es-
timate at iteration (n) of quantity X, X™, the solution of the
non-LTE radiation transfer problem for a two—level atom in PRD
will be given by X™+1) = X (™ 4+ § X ™ when §X™ /X ™ — 0,
The source function perturbation and approximate monochro-
matic A, operator follow from

o[1=AZ[1+6A,[]

where the superscript (n) refers to the estimate at step n of the
iterative scheme. Hence, the effect of the perturbation on the
intensity is, to first order,

JrD = g 4 A*[6SM) )
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and the perturbation of the scattering integral is

j:(cn+1) — j;") + / ga::v’A:,/ [65‘,(:,7')](1.’1?/ ®)
Our goal is to solve Eq. (2) iteratively for 551(:),
I+ 85 = (1 = J¢*D + B ©

Explicitly expressing the change in the mean PRD intensity
in terms of source function perturbations, we obtain the equa-
tions for 6.5},

8517 — (1 - 6)/gm'1\;:[pz/55f;‘?]dx’ =7, (10)

where the probability that a photon is absorbed in the line ap-
pears as

__$a
o= (1n
and the frequency dependent residual
5= (1 —€)J™ +eB — SV 12)

The above equations have been derived for a general approx-
imate A* operator; however, the problem is greatly simplified
by using the local approximate operator of Olson et al. (1986;
hereafter OAB). Instead of a general operator, the perturbation in
the monochromatic radiation field is then estimated by simple
multiplication
0Jy = AL 6S, (13)
Using this local, i.e. diagonal, monochromatic approximate A~
operator, the A appearing in the frequency—dependent integral
is simply a scalar variable, and the line source function correc-
tions 6.5, are found from the system of linear equations

8S — (1 =€) JowPar As6Sie) =14 (14)

zl

where the g,/ are the elements of the redistribution matrix as
well as the weights used in the numerical evaluation of the PRD
scattering integral (Eq. (3)). The new PRD algorithm can be
described as:

(0) given an initial source function, S,

(1) compute J,, from Egs. (3) and (5),

(2) at each depth, solve the §.5;, equations (14),
(3) then update S;; and S, (Eq. (1)),

(4) test for convergence and return to (1) if not.

Scharmer’s approach (1983), hereafter CRDA, to the treat-
ment of PRD problems differs from this in that he used ¢ in-
stead of g,,, i.e. assumed CRD, in the correction equation (14).
The schemes being presented here avoid the CRDA approxi-
mation, and solve directly for the frequency dependent source
function corrections. They explicitly treat the correlation in the
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frequency dependent source function caused by PRD. In the
first, the frequency—by—frequency or FBF method, the true gy,
matrix is used. This requires the solution of systems of Njreq lin-
ear equations at each depth in the atmosphere, but overcomes
the convergence problems of CRDA. A method similar to this
has been independently derived by Ulmschneider (1994). In the
second, a Core-~Wing approximation to the true redistribution
is used in place of g,,/. The idea of using coherent scattering
in the line wings instead of complete redistribution goes back
to Jefferies & White (1960). It has been widely used to avoid
solving coupled PRD problems, improved by Kneer (1975) and
extended by Hubeny (1985). We shall demonstrate that it can be
the basis of an extremely efficient iterative approximation for
the true PRD operator. This new method (CRDCS) method is as
computationally efficient as CRDA, but like FBF converges even
for the most difficult cases.

3. Construction of the local monochromatic A’ operator

In order to evaluate the A} operators, we use a diagonal ap-
proximate operator scheme as developed in OAB. The 1D short
characteristics method with monotonic parabolic interpolation
is described in Auer & Paletou (1994). The A% operators are
simply the diagonal of the full monochromatic A, operator.
Formally, A;’;’ dd = Az,dar[044] where 644 is the Dirac function.
From the integral equations corresponding to a discretizaton of
S(7), after angular integration, we, thus, obtain at each depth
the diagonal elements of A%. For both the formal solution of
the transfer equation and the computation of the diagonal A}
operators the 1D short characteristics method is used.

3.1. Approximation at small optical depths

The formal radiative transfer equation is solved using piecewise
quadratic expansions of the source functions. This requires the
evaluation of the weights w; corresponding to polynomial terms
7%, These weights can be generated by recursion and appear in
Auer & Paletou (1994; Eq. (10)) as

wo=1—e A7
w; = wo — ATe”

wy = 2wy — Ar2e AT

AT (15)

However, we have noticed that care must be used to avoid
unrealistic and/or negative values of the specific intensities I,,zq
when dealing with very small optical depths. These numerical
artifacts (round—off) can simply be avoided by using expansions
of the integral formal solution weights at low optical depths.To
avoid round—off problems, for AT < 102 we recommend to
use the following power series expansions:

AT
n+2
Ar? AT ATt
2n+3)  6(n+d)  24m+5)
This guarantees positiveness of the computed specific intensities

especially at large frequencies where an oversampling of the
optical depth scale occurs in the range 0 < 7, < 1072,

1
= A (n+1) _
T [n+1

W(n=0,1,2)

] (16)
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4. Frequency-by—frequency method

The system of linear equations in Eq. (14) can be summarized
by the formal expression
M- -685=r 17
where r is the right-hand side of Eq. (14). The elements of M
are of the form

Mij = 5,‘_7' - (1 - €)gijA;pj N i,j = 1, ceey Nﬁ-cq (18)
where 6;; is the Kronecker’s symbol and the indexes ¢ and j
refer respectively to the discretized values of z and z'.

The solution of the system requires the inversion of a
(Nfreq X Nieq) matrix at each depth in the atmosphere but this
computational cost may be significantly reduced. During the
iterations for the frequency dependent source function, the M
matrices do not change, although the  do vary from one iter-
ation to another. This system of linear equations can be solved
using the LU decomposition scheme (cf. Press et al. 1986). For
this method the decomposition of the M matrices is the major
computational cost. The reduced matrices may be stored and
then reused to find the later corrections at very little computa-
tional effort. That is, in the first iteration, one computes M and
its LU decomposition, at each depth. Then, we store the matrix
in its factored form. In subsequent iterations, we simply (1) read
the LU matrices from the storage file and (2) perform the reso-
lution of the system for the new right-hand side 7. The time for
the solution with a new right-hand side is only a small fraction
of the “once only” LU factorization.

4.1. Properties of the FBF method

We shall concentrate here on Ry; redistribution which describes
the case of coherent scattering in the atom’s frame (Hummer
1962). For realistic cases of resonance line transfer, we should
use the general expression (Omont et al. 1972)
R(z,z') = yRu(z,z') + (1 — y)Rm(z, z') (19)
but for the following illustrative examples, we shall restrict our-
selves to cases involving pure Ry redistribution, i.e. we set the
branching ratioy = 1. In this case, the CRDA method is known to
converge properly as long as the slab is optically thin at frequen-
cies where the scattering is nearly coherent (see Auer & Paletou
1994). Our frequency—by—frequency (FBF) method overcomes
the limitation of the CRDA approximation as demonstrated here.

For illustrative purposes, consider one dimensional
constant—property slabs with optical depths at line center 7o
varying from 10° to 10'2. The Planck function B is constant
and set to unity within the slab and the continuum absorption
coefficient was set to 0. The Voigt parameter a is set to 1073 and
the collisional destruction probability € = 10~4. The frequency
grid extends up to 1000 Doppler widths from line center. A res-
olution of 0.25 Doppler width is used in the core, for0 < z < 4,
and the grid is logarithmically spaced for wing frequencies. For
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Fig. 1. Convergence of the relative error in the line source func-
tions, using CRDA, obtained for various line center opacity values,
7o =108, 10%, 10", 10'2. The cRDA scheme fails to converge for large
values of 1

Ry, which is evaluated following Gouttebroze (1986), the di-
agonal of the redistribution matrix goes to the limit of coherent
scattering at large frequencies (i.e. diag[g] — 1). We have accel-
erated the convergence of the PRD schemes using the ORTHDX
procedure described in Auer (1991).

For 7o = 10°, as shown in Fig. 1, the CRDA method is very
efficient since the slab thickness at the largest frequency con-
sidered is only about 10~*. Although the FBF method (Fig. 2)
shows good convergence, more iterations (10) are needed to
achieve an accuracy of 107> x € in the line source functions. On
the other hand, the complete failure of the CRDA method is ob-
vious in Fig. 1 when 7y is large. The convergence slows progres-
sively and finally “breaks down” for 7, larger than 10'°. On the
contrary, the new method is still convergent even for very large
line center optical depths (for 7o = 10'2, 721000 > 100). Aslong
as the CRDA scheme converges properly, both methods yield
identical solutions, but the performance of the CRDA approxi-
mation dramatically worsens as the optical depth is increased.
When7,, .. > landgg, . z,... = 1the CRDA scheme simply
fails to converge.

5. Core—~Wing method

While the FBF approach rectifies the failings of the CRDA
scheme, it has several major drawbacks. It requires a large
amount of both memory and computing time for realistic ra-
diative transfer problems especially in 2D geometry. In order
to overcome this, we recommend finding the corrections to the
source function by approximating not only the A—operator but
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Fig. 2. Same as Fig. 1 but with the FBF scheme. With the new method,
we have convergence for all the cases treated here. The most important
to feature is that convergence can be obtained even for cases for which
the CRDA scheme fails

alsothe frequency redistribution function, g,/ . Our new method
blends the two “limits”: (1) CRD approximation and (2) coher-
ent scattering, and is as robust as FBF but computationally much
more efficient.

The scheme has a strong physical basis. The origin of
the frequency redistribution when a photon is scattered co-
herently in the atomic frame, i.e. Ry, is the fact that the
Doppler shift for the incoming and outgoing direction are not
the same because of the change in direction. Very roughly,
Zout = Tin £ O(1 Doppler width). For x;, ~ 0 this corresponds
to redistribution across the line core. For z;, > 1 the Doppler
shift is nearly negligible so Zoy =~ iy in the wings. This sug-
gests that one may approximate the redistribution function as
Complete Redistribution over the core and Coherent Scattering
in the wings (or CRDCS). We are lead graphically to the same
idea if we plot g, as in Fig. 3.

We accordingly divide the frequency domain into a core
region (z < z.) and a wing region, for larger z. Instead of the
true redistribution function, we use g+ =~ ¢ for z,z’' < z.,
and g, =~ 6(x —z'), for ' > z.. This leads to an approximate
redistribution function which has complete redistribution for
core frequencies and coherent scattering for wing frequencies:

/g:cz’ Jyda!

~ (1 - aa)) ¢I’J2/dx, +

core

am/ §(x — ')y dx’ (20)
wing

We have introduced the splitting coefficient, a,, in order to
switch smoothly between the two different scattering regimes.
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Fig. 3. Behaviour of g,.- as a function of z for different values of
z' (@ = 1073). It illustrates the transition between the two regimes:
crD-like for core frequencies, small z’, and g, is centered on z = 0;
quasi—coherence for wing frequencies, g, is peaked at z = z’

Physically a reasonable choice for the separation frequency
z¢ is 3.5 Doppler widths. Numerical experimentation, Fig. 4,
has both validated this choice and demonstrated the relative in-
sensitivity of the method to values 2 < z. < 10. Further, for the
core frequencies, we can set the o, coefficient to 0. This makes
the core 6.5}, independent of the corrections in the wings which
greatly simplifies the solution of the system, as we show below.
At larger frequencies, g,/ begins to show the quasi—coherent
nature of the Ry frequency redistribution, since the function be-
comes peaked at z = z’. To avoid complete decoupling of the
core and wing frequency domains, and to insure a progressive
switch between the CRD and coherent scattering approxima-
tions, for large frequencies (larger than z.), we use oy = gzo,
i.e. the diagonal value of the redistribution matrix at frequency x
(see Fig. 5). As shown further in Figs. 6-7, this a;; and 2, = 3.5
yield a robustly convergent method, which is easily solved.

The approximate redistribution operator, Eq. (20), when
coupled with the OAB approximation, Eq. (13), yields an es-
timate of the change in J in terms of the change in Sj,:

8Jp = (1 — ag)dJ. + appr A%ES), 20
with

_ +T
6J. = ¢z’pz/A;’6‘Slz’dl', (22)

—Z

The equation for 65, is obtained by substituting the approxi-
mation Eq. (21) into Eq. (10)

S~ (1— )1~ ) [ uper AL 8Sda’ —

core

maximum relative error

iteration

Fig. 4. Convergence of the maximum relative error in the line source
functions obtained with the CRDCS scheme, for different values of
the Core-Wing separation frequency. This numerical experimentation
demonstrates that z. = 3.5 is a reasonable choice

az(1 —€) me/A;,cSSI(Z,)é(x —z)y=rg (23)

wing

The critical feature of this equation is the simplicity of the cou-
pling between different frequencies: wing frequencies drop out
for x < z., and in the wings, core frequencies appear only as
a single integral. It is accordingly possible to find all the 6.5,
from simple scalar equations, completely avoiding the solution
of any systems of equations no matter how large the frequency
grid is.

5.1. Core frequencies

We solve first for the core corrections. As we just noted, because
oy = 0forz <z, the solution for the core is independent of the
wings. The core integral is frequency independent, so following
Scharmer (1983) we can define

AT=(1-¢) | ¢upyAL6STdz' 24)
core

which implies

8SW — AT =1, 25

Integrating over the core, (1 — €) fcor o PP ALl ldz’, we can
write a scalar equation for AT, using the facts that AT is fre-
quency independent and A}, is alocal value not a spatial operator.

(1 —(1—%¢ gbm/A;,pz/dx’) AT =7 26)

core
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Fig. 5. The set of o, values we adopted is displayed in this figure, as
a function of z the reduced frequency from line center. The diagonal
value of the redistribution matrix permits to shift smoothly towards
coherent scattering in the far wings

where 7 = (1 —€) [ ¢oALiparerde’. AT is found by a
single division at each point in the grid. Once the AT have been
evaluated, the source function corrections for core frequencies
are merely the sum of a frequency independent term plus a
frequency dependent one, the residual 7, (cf. Eq. (25)).

5.2. Wing frequencies

The coherent scattering approximation used for wing frequen-
cies makes the evaluation of the related source function correc-
tions also very simple and fast. Using the monochromatic diag-
onal operator A% and, assuming that AT has been previously
determined for core frequencies, at a given depth the corrections
for x > z. are

6S(n) _ Tg + (1 - aI)AT
P —ap(1 - 9ALps

27
which is equivalent to solving a diagonal system of equations.

5.3. Properties of the CRDCS method

After all the 6.5, have been determined from Egs. (25-27),
the source functions are corrected, a formal solution for the
radiation field is made and 7, is reevaluated. The system is
iterated to convergence. As in Auer & Paletou (1994) the cor-
rections converge rapidly. We may check the relative precision
of the CRDCS method against the FBF one. To this end, we
choose a pathologically numerically difficult case, with a line
center opacity 7o = 10'°, a frequency grid ranging 1000 Doppler
widths from line center and € = 10~8. Convergence is reached

F. Paletou & L.H. Auer: A new approximate operator method for partial frequency redistribution problems
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FBF source function
Fig. 6. The agreement between the FBF and the CRDCS scheme is
excellent as we obtain a nearly perfect 45° slope line when plotting the

values of the source functions computed using the two methods against
each other

107! 100

Table 1. As a function of the number of spatial grid points, N, we obtain
the following time ratios for one FBF iteration against one CRDCS
iteration: ¢ when the LU factorization is performed at each iteration
and ¢{° when it is performed “once only”

40 875 1.23
70 986 1.32

with 50 iterations for the FBF scheme and 80 iterations for the
CRDCS scheme with a relative accuracy of 1% (in the source
functions) between each method’s solution. In Fig. 6, we have
plotted Scrpcs against Sgpg. Although there is a 10* range in
the source function, we have a 45° slope line, demonstrating the
excellent agreement between the two solutions.

Despite the fact that the new CRDCS converges for cases
where CRDA completely fails, the new method requires no more
computational effort per iteration.

5.3.1. Rate of convergence

In order to compare the convergence properties of the CRDCS
method with the others, we have plotted, in Fig. 7, the maximum
relative error in the line source functions for the same cases as
in Sect. 4.

If the slab is thin at wing frequencies (1, = 10°), the rate
of convergence is almost the same as the one obtained with the
CRDA method. For such slabs then, the CRDCS scheme appears
to converge in fewer iterations than the FBF one. For more dif-
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Fig. 7. Same as Fig. 1 but with the CRDCS scheme (z. = 3.5). For low
Ty slabs, the rate of convergence is almost the same as for the CRDA
method. When 7y increases, the favorable convergence property of the
CRDCS is preserved. The importance of acceleration of convergence is
also shown on the 7y = 10'2 case

ficult cases, with very large optical depths, the CRDCS scheme
shows a good rate of convergence but, as expected, it is less
rapidly than the FBF one. Note that one CRDCS iteration can
be a factor of ten faster than one FBF iteration so that despite
the increase in the number of iterations, there is a dramatic de-
crease in the computational cost (see Table 1). In addition the
memory storage for the CRDCS is dramatically less. The most
critical point, however, is that even for difficult cases, the CRDCS
scheme always converges while the CRDA one does not.

5.3.2. Non-sensitivity of the iterative scheme to the initial guess

A check of convergence, especially at high frequencies, is pro-
vided by investigating the effect of different initial values for
the source function on the iterative scheme. In Fig. 8 we plot the
line source function values for each iteration at the surface of the
slab and at the larger grid frequency (1000 Doppler widths away
from line center). We use four different initial values, ranging
from the CRD solution, 0, %B and B. As one can see in Fig. 8,
whatever the initial value of the line source function, a unique
solution is reached after 30 iterations of the CRDCS scheme.
Equivalent behavior is found at larger depths in the atmosphere
as well as for other frequencies, showing the good convergence
of the scheme.

6. Conclusion

We have developed new methods for the numerical solution of
radiative transfer problems including the effects of PRD. These
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Fig. 8. Evolution of the surface source function at x = 1000 obtained
with the CRDCS scheme and for various initial values (Scrp, 0, %B
and B)

schemes are based on approximation of both the frequency re-
distribution and radiative operators. Convergence is obtained
for a wider class of problems than is possible using Scharmer’s
approach (1983), including thick slabs with Ry redistribution
very far from line center. While we have found that simultane-
ous solution for the frequency dependent source function en-
sures convergence, a simple Core-Wing approximation to the
redistribution leads to a scheme which is equally robust and
dramatically more efficient with respect to both computing time
and memory requirements. Further, the new CRDCS is as com-
putationally efficient as the earlier CRDA approach, converges
as rapidly as CRDA for the cases in which that method works
and, most importantly, converges rapidly for all cases. Finally,
we should note that although our presentation has used the OAB
approximation, the Core-~Wing correction method can be used
with any other Approximate Lambda Operators to achieve even
higher rates of convergence.
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