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ABSTRACT

Iterative schemes based on Gauss-Seidel (G-S) and optimal successive overrelaxation (SOR) iteration are
shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can
be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal
approximate operator splitting techniques, but the computing time per iteration and the memory requirements
are similar to those of a local operator splitting method. In addition to these properties, both methods are
particularly suitable for multidimensional geometry, since they neither require the actual construction of non-
local approximate operators nor the application of any matrix inversion procedure.

Compared with the currently used Jacobi technique, which is based on the optimal local approximate oper-
ator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excel-
lent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for
multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration tech-
niques to achieve even higher performance.

Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT prob-
lems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that
of a local operator splitting method. While the conventional optimal local operator scheme provides the con-
verged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of
points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations

is only

n/2./2. This method is competitive with those that result from combining the above-mentioned

Jacobi and G-S schemes with the best acceleration techniques.
Contrary to what happens with the local operator splitting strategy currently in use, these novel methods
remain effective even under extreme non-LTE conditions in very fine grids.

Subject headings: methods: numerical — radiative transfer — stars: atmospheres

1. INTRODUCTION

Advances in our understanding of stellar atmospheres (and
of some other astrophysical systems) largely depend on our
ability to develop very fast and accurate numerical radiative
transfer (RT) methods. There are two main reasons for this.
First, suitable diagnostic techniques can be developed to
deduce, from the measurable properties of the radiation field,
the chemical composition and the thermodynamic and
dynamic state of astrophysical plasmas. Second, processes of
energy and momentum exchange by radiation play an impor-
tant role in the structure and dynamical behavior of many
astrophysical fluids; consequently, it is often mandatory to
couple the RT and the magnetohydrodynamic equations when
trying to provide a suitable physical explanation of the
observed phenomena. Over the last 10 years we have witnessed
impressive progress in these two branches, driven in part by
the application of a number of efficient iterative algorithms and
powerful mathematical techniques (see, e.g., Auer, Fabiani
Bendicho, & Trujillo Bueno 1994, and more references therein).
However, as explained below, it is unlikely that the iterative
algorithms currently in use will allow any further dramatic
progress, except perhaps through the use of massively parallel
computers. This paper aims at presenting a novel iterative
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scheme that allows RT problems to be solved with an order-of-
magnitude improvement over the fastest methods currently in
use.

During the last decade the literature on RT has been partic-
ularly abundant with respect to the mathematical techniques,
which have become the methods of choice for the numerical
solution of large-scale non-LTE problems in which there is
nonlocal coupling due to scattering. These are the so-called
accelerated (or approximated) A-iteration techniques, in which
the symbol A is used to designate the operator that, acting on
the source function, leads to the radiation intensity (see, €.g.,
the overviews given by Kalkofen 1987; Rybicki 1991; Hubeny
1992). These methods are based on the idea of “operator
splitting” (Varga 1962; Cannon 1973), in which the discrep-
ancy between the approximate and the exact operators is used
to generate a correction to the previous estimate. The basic
difference between the various strategies proposed lies in the
choice of the approximate A-operator: if a nonlocal one is
chosen, then spatial couplings are taken into account, and the
computing time per iteration may be relatively large, given the
need to construct the approximate operator and to perform
matrix inversions, but the number of required iterations may
be small; if a local one (i.e., diagonal) is chosen, the computing
time per iteration is the smallest that can be achieved, but the
number of required iterations may become relatively large.

The present state of the art in this context is basically the
following. One may choose either the optimal local operator
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given by the diagonal of the true A operator (see Olson, Auer
& Buchler 1986, hereafter OAB), or select a nonlocal operator
such as, for example, the one proposed by Scharmer (1981) or
any of those banded operators that take into account spatial
couplings with the neighbor points (Olson & Kunasz 1987).
For example, with Scharmer’s (1981) global operator, which is
suitable for one dimensional applications only, one finds CPU
time advantages with respect to the optimal local operator
method (generally not larger than a factor 2) for few-level
model atom configurations, while for many-level problems the
optimal local operator choice combined with Ng’s (1974) accel-
eration technique is faster, and the global operator quickly
becomes prohibitive in its memory requirements (Carlsson
1991). On the contrary, taking only nearest neighbor depth
couplings into account in one-dimensional situations leads to a
tridiagonal system of equations, and the extra computing time
per iteration is not substantial (see Olson & Kunasz 1987; see
also, e.g., Rybicki & Hummer 1991). As shown in these refer-
ences, the saving in the number of required iterations to reach
convergence, which can be achieved by selecting such a one-
dimensional tridiagonal operator instead of the optimal local
one, is about a factor 2 when such operator splitting methods
are combined with Ng’s (1974) acceleration of convergence
technique. However, in two and three dimensions an approx-
imate operator that takes nearest neighbor couplings into
account is very costly both to construct and to invert; for
example, in two-dimensional Cartesian coordinates it leads to
a system of equations with a tridiagonal augmented by two
bands of width 3 separated from the main diagonal by a
number of elements equal to the number of horizontal grid
points, while the number of alternating zero and nonzero
bands in three-dimensional situations is even larger (Kunasz &
Olson 1988; Vith 1994). Therefore, in two and three dimen-
sions, avoiding the actual construction and inversion of non-
local operators is truly essential, while in one-dimensional
situations the best approach at present is, in practice, either to
use the optimal local approximate operator or the tridiagonal
one, which typically leads to a CPU-time saving factor not
larger than 2 for scalar class computers.

Another method of potential interest for RT applications
(mainly for two- and three-dimensional problems) is the multi-
grid method (Hackbush 1985; Steiner 1991 ; Fabiani Bendicho,
Trujillo Bueno, & Auer 1994). Each multigrid iteration is basi-
cally composed of two essential parts: a smoothing one, in
which a few iterations in the desired fine grid using a suitable
iterative scheme should get rid of the high-frequency com-
ponents of the error of the current estimate, and the actual
corrections evaluated by interpolating to the fine grid the solu-
tion of the error equation obtained in a coarser grid. For the
smoothing part, both local and nonlocal splitting schemes have
been used (see Steiner 1991), with the result that the optimal
local operator method (which has the above-mentioned
advantages) has a much worse smoothing capability than the
nonlocal one, often leading to failure of the multigrid iteration.

It is clearly of great potential interest to develop a new
general RT iterative scheme (equally applicable to one-
dimensional and multidimensional geometries) with a con-
vergence rate and a smoothing efficiency identical to that of a
highly nonlocal operator splitting method, but with memory
requirements and a computing time per iteration similar to
those of the local operator method. In this paper we introduce
such a novel iterative scheme and two new RT methods based
on it, which lead to saving a remarkable amount of computa-

tional time with respect to the splitting methods discussed
above. We concentrate here on considering linear RT prob-
lems, such as the coherent scattering or the two-level atom line
transfer case. We have already applied the very same methods
(developed below) to the multilevel atom case with successful
results. However, for the sake of clarity with the present paper,
we postpone the extension to the full nonlinear multilevel
problem for a forthcoming publication (Trujillo Bueno &
Fabiani Bendicho 1995), in which we shall show how the pre-
conditioning strategy of Rybicki & Hummer (1991) can be
suitably generalized to achieve such a goal.

The outline of this paper is as follows. Section 2 begins
presenting (for the case of a linear system of equations) the
general iterative scheme from which a number of basic iterative
methods are obtained once the corresponding approximate
operator is selected. One of these methods is the one proposed
by Jacobi (1845), for which the approximate operator is the
optimal local one. This was developed by OAB in a way suit-
able for RT applications. The other two iterative methods form
the basis of the present paper; they are the Gauss-Seidel (G-S)
and the successive overrelaxation (SOR) schemes (Seidel 1874;
Young 1950), whose convergence properties are identical to
those of upper (or lower) triangular splitting operator methods.
In § 3 we describe how these methods can be applied efficiently
to RT problems, i.e., we develop a technique based on the
“short characteristics” formal solution strategy (Kunasz &
Auer 1988; Auer & Paletou 1994; Auer et al. 1994), which
allows us to perform G-S and SOR iterations at the same
computational cost than that required by Jacobi’s ones. This
will allow us to clarify and emphasize that, in spite of the fact
that our G-S and SOR RT methods have the high convergence
rates of upper triangular operators, they neither require the
actual calculation of such approximate nonlocal operators nor
performing matrix inversions. Our presentation continues in
§ 4 with a number of demonstrative results that show that our
SOR scheme remains equally robust even under extreme
non-LTE conditions in very fine grids, often leading to an
order of magnitude of saving in the total computational time
with respect to the local operator technique. Section 4.4
demonstrates that our G-S method has excellent smoothing
capabilities and establishes it as the basic iterative scheme of
choice to perform the required smoothing iterations in multi-
grid RT. Finally, § 5 provides some concluding remarks.

2. BASIC ITERATIVE METHODS

Consider the linear system of algebraic equations
Au=b, (¢Y)

where A4 is an operator, b is a known vector, and u is the
unknown (e.g., the source function at each grid point). Assume
that we have an approximate solution #°'%. Since #°' is not the
exact solution u, we have a nonzero residual given by

r=5b— Au = Ae , 2

where e = u — u®"Y is the error associated with the estimate #°!¢.

Therefore, one way to find the exact solution # is to obtain the
error e by solving the system (2) and then

u=u"+e. (3

However, to solve the system Ae = r is as difficult as solving
the original system (1), and nothing would be gained.
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A better idea is to obtain an approximate correction e* by
solving

A*e* =r, 4

where A* is an approximation to the operator 4 such that this
new system is easier to solve than the original one, and then to
iterate until convergence is reached. The resulting iterative
scheme reads

A*u"™ = (A* — Au® + b, )
or
" = Gu +w, (6)
where
G=1-(4%"'4, 7

with 1 the identity operator, and the vector
w=(4%*)"1b . (8)

The convergence properties of the scheme depend on the
spectral radius of the iteration operator G. The spectral radius,
p, is the largest absolute eigenvalue of G, and it gives the
asymptotic rate of convergence of the iterative method. In fact,
errors decrease as p™'* (with itr being the iteration number) and,
as shown below in equation (30), the number of iterations
required to reduce the error by a given factor is inversely pro-
portional to —In(p). This is because the error e satisfies
e"" = Ge°'Y; therefore, for the method to converge, p must be
smaller than unity (e.g., Young 1971). Alternatively, one may
express the iterative scheme in terms of the corrections Au as
follows:

new
u

=u" + Au, )
where
Au = (4%)"r . (10)

It is useful at this stage to choose a particular reference
problem in order to clarify how these methods can be devel-
oped in a way suitable for numerical RT. To this end, we select
the coherent scattering case, but note that, as demonstrated by
the results presented in § 4.3, the formulae that follow can
indeed be generalized and applied straightforwardly to the
two-level atom line transfer case for which the relevant quan-
tity is the average profile intensity J instead of just the mean
intensity J. For the coherent scattering problem the source
function vector §'is given by (e.g., Mihalas 1978)

S=(1—¢€J+eB, 11

where € is the non-LTE parameter that we assume constant
only for notational simplicity, and B is the Planck function
vector. The mean intensity J can be written as

J=A[S1+ 7, (12)

where the vector £ represents the transmitted contribution to
J due to the given incident radiation at the boundaries of the
computational domain, and A is the angle-averaged A-
operator. Accordingly, the unknown vector u in equation (1) is
the source function 8, while the right-hand side vector b and
the operator A are given by

b=eB+(1—¢f, (13)

Vol. 455
A=[1-(1-eA]. (14)

From equation (9), it is now straightforward to show that
StV = $° L AS, (15)

with
AS=[1—(1 - eA*¥] [(1 — & + eB — $'9], (16)

where A* is the angle-averaged approximate A-operator and
Jold =A[sold] + j

It is important to clarify the actual meaning of this last
expression. The mean intensity vector J°¢ that appears in
equation (16) is to be obtained directly via a formal solution of
the transfer equation for the given “old” source function
values $°Y, ie., the operator A never need be evaluated as a
matrix itself. Therefore, for linear RT problems the strategy
currently in use is such that once the approximate operator
A* =1 — (1 — e)A* has been computed and inverted, each
iteration just requires a call to a formal solution routine that
calculates the mean intensity J; at each spatial grid point i (see,
e.g., Rybicki 1991).

For our discussion below, we establish now the properties of
the operator 4. From equation (14) it is clear that these proper-
ties depend on those of A. The physical meaning of this A-
operator can easily be deduced from equation (12).
Considering a discrete spatial grid with the incident intensities
at the boundaries of the medium equal to zero, each element
A;; would be a positive real number between 0 and 1, since it
just gives the response of the mean intensity J at the spatial
point i due to a unit-pulse source-function perturbation at j.
From the formal solution of the transfer equation (see eq. [34]
below) it is clear that the elements A;; only depend on the
optical distances between i and j. For RT problems similar to
those considered in this paper (i.e., for plane-parallel semi-
infinite atmospheres where the spatial grid index is taken to be
unity at the surface and increasing inward), one would find
A > Ay forj > i, ie., the elements of the operator A would be
more significant in its upper triangular side than in the lower
one. Accordingly, considering equation (14), the following may
be concluded:

1. The elements of the operator A4 are real numbers.

2. The operator A is an L-operator, i.e., its diagonal ele-
ments a; > 0, and its nondiagonal elements a;; < 0.

3. The operator A has weak diagonal dominance, i.e., in at
least one row the diagonal element is larger in absolute value
than the absolute sum of the off-diagonal elements, while in the
remaining rows the diagonal element is larger or equal in
absolute value than the absolute sum of the off-diagonal ele-
ments.

Clearly, the various possible iterative methods result from
the selection of the splitting operator 4* (see eqs. [9] and [10]).
We point out that properties (1) and (3) suffice to guarantee the
convergence of all the iterative schemes we are about to con-
sider (see, e.g., Varga 1962; Young 1971).

2.1. Picard’s or A Iteration

This is obtained when the splitting operator A* in equation
(10) is taken equal to the identity operator, implying that A* in
equation (16) is to be chosen equal to zero. This means that at
each spatial grid point i, the iterative corrections are as simply
as follows:

SPV = S99 + AS; = SP¢ + [(1 — €l + €B; — S34] . (17)
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Therefore, no matrix inversions are required, and the com-
puting time per iteration is the smallest that can be achieved.
However, the spectral radius of the iteration operator
G=1-A=(1—¢€A (see eqs. [7] and [14]) is p(G) = 1 — €
for optically thick media; therefore, as it can also be under-
stood from physical arguments (see, e.g., Mihalas 1978), the
method converges extremely slowly for non-LTE problems of
practical interest, since for these cases p(G) =~ 1.

2.2. Jacobi’s Method

This iterative scheme (Jacobi 1845) is obtained when the
splitting operator A* is given by the exact diagonal of the true
operator 4, and hence A* in equation (16) must be chosen
equal to the diagonal of A. Since the splitting operator 4* is
local (i.e., diagonal), its inverse is just the scalar inverse of its
elements, and the computing time per iteration is also the smal-
lest that can be achieved. The diagonal of the true operator 4
actually constitutes the optimal local operator available, and
accordingly convergence properties are substantially better
than those in Picard’s scheme. In fact, in an important paper
OAB (1986) demonstrated that Jacobi’s iterative scheme can be
used as a practical method for solving RT problems, specially if
it is combined with powerful acceleration of convergence tech-
niques, such as those discussed by Auer (1987, 1991).

As can be deduced from equations (9) and (10), the Jacobi
iteration uses u°¢ to compute u3°¥, u3°", ... us" (with N being
the number of spatial grid pomts) as follows (the reason for
splitting the summation as we do here will become evident
below):

new
u;

old
= yod 4 b; "Z'= aiju;
i
all

Z} ; old (1 8)

s

where a;; are the elements of the operator 4. For our RT
reference problem we have, at each spatial point:

Stev = S L AS,, (19)
with
[(1 —eJ" + eB; — §]
AS; = 2
' [1—(1-eAl 0

Therefore, as with the A-iteration, each Jacobi iteration simply
requires a single formal solution of the transfer equation for the
previous estimate S°¢ of the source function, in order to
provide the mean intensity J°'. Note that the approximate
operator here (i.e., the diagonal elements A ;; of the full operator
A) can be obtained efficiently. For example, if the formal solu-
tion technique proposed by Kunasz & Auer (1988) is selected, a
suitable strategy for obtaining A, is available (Olson &
Kunasz 1987; Auer & Paletou 1994), while the reader is
referred to the appendix of Rybicki & Hummer’s (1991) paper
if Feautrier’s method is chosen.

2.3. Gauss-Seidel Method

The (G-S) method (Seidel 1874) is obtained when u$ is
replaced by u}°" in the first sum of equation (18). The resultmg
iterative scheme reads

new
b Z] 1 AijUj
a;;

ZI i U ?ld

u?ew — uiold +

@n

NOVEL RADIATIVE TRANSFER ITERATIVE SCHEME 649

This equation can easily be reorganized to express it in the
following way:

Z new

which shows dlrcctly (see eq. [5]) that the ensuing approximate
operator A* is given by the lower triangular part of the true
operator A, ie., it is formed by the elements that are on the
diagonal and beneath the diagonal of the full operator 4. Note
that the same applies here to A* with respect to A, because A is
given by equation (14). Therefore, a small change in the Jacobi
iterative scheme has produced a crucial change in the approx-
imate operator A*, which is now nonlocal, and it represents a
much better approximation to the true operator A.

For our RT reference problem the G-S source function cor-
rections at each spatial grid point i would be

[(1 _ €)J;)ld and new + EBi _ Sti)ld]
[1-(1-9eAyl ’

where J¢'92md eV means that at the spatial point i the mean
intensity has to be calculated via a formal solution of the trans-
fer equation using the “new” source function values S7"
already obtained at points j=1,2,...,i— 1, and the “old”
source function values S§ at points j =1i,i+1,..., N.Itis
very important to clarify the meaning of equation (23):

=b,— Z a;ud?, (22)

j=i+1

ASSS = (23)

1. First, at point i = 1 (which can freely be assigned to any
of the two boundaries of the medium under consideration) use
“old” source function values to calculate J; via a formal solu-
tion. Apply equation (23) to calculate S7°¥.

2. Go to the next point i = 2 and use S{°¥ and the “old”
source-function values S at points j =2, 3, ..., N to get J,
via a formal solution. Apply equation (23) to calculate S5°*.

3. Go to the next spatial point k and use the previously
obtained “new ” source function values at j=1,2,...,k — 1,
but still the “old” ones atj=k, k+1,..., N togetJ, viaa
formal solution and S;** as dictated by equation (23).

4. Go to the next point k + 1 and repeat what has just been
indicated in the previous point until arriving to the other
boundary point.

The result of doing what we have just summarized is a G-S
iteration, i.e., it gives exactly the next value for $"°¥ that equa-
tions (15) and (16) would provide directly, were the approx-
imate operator A* chosen equal to the lower (or upper!)
triangular part of A. (Note that it would be the lower triangular
part of A if, for a fixed numbering of the grid points, we start
the above-mentioned process at i = 1, while it would be the
upper triangular part if we started at i = N.) It is very impor-
tant to emphasize that, although the convergence rate of the
resulting scheme actually corresponds to the above-mentioned
nonlocal triangular operator, performing our G-S iterations
(see eq. [23]) neither requires the construction of such a non-
local operator nor the application of any matrix inversion pro-
cedure. The difference with respect to Jacobi’s iteration is that
in that case, given $*'9, one first performs a formal solution of
the transfer equation to obtain J°'¢ and then applies equation
(20) for the source function corrections, while with our G-S
scheme (see eq. [23]) each time a “new ” source function value
Sie¥ is obtained at a point i, one uses it when calculating the
mean intensity J;,, at the next grid point i + 1, which is
required to get Si$%, and so on. Clearly, the only way to do this
efficiently is via the development of a suitable strategy that
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allows to carry out G-S iterations (see eq. [23]) (i.e., to do what
we have summarized in the four points above) in the same
amount of computing time as that required by each Jacobi
iteration. This will be the objective of the next section.

2.4. The Successive Overrelaxation Method

The SOR method (Young 1950, 1971) is obtained from the
G-S iteration (21) via the use of a parameter w (with 1 < @ < 2)
as follows:

_\i-1 new old
unew — yold 4 w(b" =1 8y j=i %ijUj ) (24)
1 1 N

a;;

(11

Accordingly, for our RT example the SOR correction at
each spatial point i would be

ASSO® — ) ASSS | (25)

which shows that SOR’s method overcorrects the value of S at
the current stage of the G-S iteration, thus anticipating future
corrections. It is straightforward to show that the ensuing split-
ting operator A* is just the G-S 4*, which, as explained above,
is the lower (or upper) triangular part of 4, but now its diago-
nal elements are divided by w. However, it is important to note
from equation (14) that this does not imply that the diagonal
elements of the ensuing approximate operator A* are simply
Aj/o.

The best choice for the relaxation parameter w is that which
leads to the highest rate of convergence, i.c., that which mini-
mizes the largest absolute eigenvalue of the operator G (see eq.
[7]). There is a very important theorem (Young 1971) that
establishes that, if the operator 4 is “ consistently ordered ” (see
Hageman & Young 1981), the optimal value of w is given by

2

WOy = ————F———, 26

ST 9
where ¢ is the spectral radius of the G-S iteration. In general,
from a strict point of view, the operator 4 (see eq. [14])
encountered when solving RT problems is not consistently
ordered. However, equation (26) is still valid if Jacobi’s method
converges and its corresponding iteration operator G has real
eigenvalues (see, e.g., Young & Gregory 1972). Moreover, as
shown by Kahan (1958), if 4 is an L-operator (cf. property b
above) and if one uses the w-value resulting from equation (26),
then the largest absolute eigenvalue o of the iteration operator
G (see eq. [7]) of the SOR method is such that

Oy — 1 <0< /0o — 1, 27

with the equality
1—-/1-90

T+ /1o

possible only if all eigenvalues of G have modulus |w,, — 1|.
With the demonstrative results of § 4 we shall confirm that
equations (26) and (27) are indeed effective in numerical RT.
Our purpose now is to demonstrate that with a RT method
based on these optimal SOR iterations one can obtain an
order-of-magnitude improvement over the Jacobi-based
optimal local operator method.

To this end, we note that in order to reduce the error by a
factor 10~/ using an iterative method of spectral radius p, we
have to iterate N,,., times, which we obtain from

pNer = 1077, (29)

o= Wop — 1 (28)

Vol. 455

which in turn leads to
fIn(10)
In(p) °

As shown below, for RT problems the variation of the spectral
radius A of Jacobi’s method with the number n of grid points
per decade in optical depth can be well approximated by

Nier = —

iter

(30)

a
A=1——, 31
- (31)
where a and b are constants whose particular values depend on
€, but are of order unity. Therefore, according to equation (30)
the number of Jacobi iterations required to reduce the error by
a given factor is (for n > 1) as follows:

Ni..(Jacobi) = gln( 10)n° , (32)

while, taking into account equations (27) and (28), and that
& =~ A2, the number of necessary SOR iterations is only

lL111(10)\/;1"’ < N4(SOR) < Lln(lO)\/r? . (33
2 \/Ec_z 2a

This result leads to the conclusion that an impressive
amount of CPU time can be saved if one is able to develop a
suitable strategy for performing SOR iterations at the same
amount of computational cost as that required by Jacobi’s
method (see next section). Further, note that the pure G-S
scheme already yields a factor of 2 saving with respect to
Jacobi’s method because § ~ A2.

As may be expected, the effectiveness of the SOR method
depends on the availability of a prescription for selecting the
optimal parameter w. Fortunately, as already mentioned (see
the demonstrative results below), equation (26) is effective for
RT problems. Therefore, it is only necessary to establish a
suitable procedure for estimating ¢ from which to derive the
value of w. We shall indicate a simple procedure for doing this,
which will allow us to demonstrate that our SOR method is
competitive with the best acceleration methods applied to
Jacobi’s scheme.

3. EFFICIENT IMPLEMENTATION OF THE GAUSS-SEIDEL AND
SUCCESSIVE OVERRELAXATION METHODS

The objective here is to describe the method that we have
developed for performing G-S and SOR iterations at the same
computational cost required by Jacobi’s method. (By
“computational cost required by each Jacobi iteration” we
mean that which can be achieved when both the diagonal ele-
ments A; and the mean intensities J; are calculated within the
framework of the formal solution strategy selected). In our
presentation we need only to refer to G-S iterations since the
SOR corrections are straightforwardly obtained from the G-S
ones as indicated by equation (25). A G-S iteration is achieved
once the source function corrections (see eq. [23]) are obtained
at all grid points. This, in turn, requires implementing the pro-
cedure summarized in § 2.3 in order to calculate the mean
intensities J¢'42""e¥ at all grid points i. Clearly, we need to
develop a formal solution routine such that each call to it
produces as an output a truly G-S iteration. To this end, one
has to carry out the source function corrections (see egs. [19]
and [23]) within the formal solution solver itself so that, once
Sie¥ is obtained at the grid point i being considered, the mean
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intensity J;,, at the following point i + 1 can be calculated
using these “new ” source function values from the grid points
considered previously, but still using the “ old ” source function
values of the remaining points.

Consider an arbitrary distribution of spatial grid points, like
the one depicted in Figure 1. Points 1 and N are the two
boundary grid points, at which the specific intensities I(u) for
rays entering the medium are given (u = cos 8, with 0 being the
angle the ray makes with the normal to the surface); for
instance, for the plane-parallel atmosphere examples con-
sidered in this paper, point 1 would be the surface point where
the incoming intensity is 0, while point N would be the lower
boundary point where the specific intensity is given by the
diffusion approximation. Choosing the so-called short-
characteristics integration technique (see Kunasz & Auer 1988)
as a formal solution strategy of the RT equation, the specific
intensity at a given point O, for a given frequency and ray
direction, can be expressed as

Io=1Me—AtM+‘PMSM+‘I’0SO+\IIPSP, (34)

where At,, is the optical distance on segment MO, and the
Y-quantities are functions of the optical distances between O
and the upwind point M and between O and the downwind
point P, while S, (with k = M, O, or P) are the source function
values at such grid points k. Formula (34) assumes that the
source function varies parabolically along the points M, O, and
P. Alternatively, one may be tempted to assume that the
source-function varies linearly along M and O, in which case
the last term of equation (34) would disappear, and the quan-
tities ¥,, and ¥, would only depend on At,,. Our develop-

Incoming

*SN old
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ment below is for the truly accurate parabolic case, in which
formula (34) is applied to obtain the radiation intensity at the
interior grid points, while the above-mentioned linear formula
is only used at the boundary grid points for rays going out of
these boundaries.

To facilitate the understanding of our G-S method, it is
convenient to describe it in two distinct parts: an incoming one
and an outgoing one, which are separated by a lower boundary
section.

1. Incoming part—After taking into account the upper
boundary contribution, the calculation starts at point 2, pro-
gressing point by point until the lower boundary one. At each
of these spatial points k the incoming intensity I(u) is calculated
according to equation (34) for each incoming angle u < 0 of the
angular quadrature chosen for the numerical solution of the
problem. These intensities are actually used at each grid point
k in order to make an incoming contribution to the mean inten-
sity. Therefore, at the end of the incoming section, the content
of the mean intensity array J, is

(V]
Je=Jp = %f Iy (35)
-1
where k is the spatial grid-point index. As explained below,
with the exception of the two boundary points, for the moment
the array J, only contains an approximation to the exact incom-
ing contribution to the mean intensity at the current iterative
stage.

2. Lower boundary section—At the lower boundary point
(k = N), the content of the array Jy is the exact Ji. At this
point (k = N) the outgoing intensities are determined already

Outgoing
+ S 1 OId

. SZ old

® Sp old
\ SO old

Sm new!!

® SN new!!

* SN new!!

FiG. 1.—One-dimensional spatial grid with short characteristics M—O providing a schematic visualization of the incoming part (1) and the outgoing part (3) of the

G-S strategy described in the text.
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by the lower boundary condition. Therefore, it is straightfor-
ward to use this information to calculate the outgoing contri-
bution to the mean intensity, i.e.,

1
Nt=3 L Iwdu . (36)

Given the mean intensity Jy = Ji? + J3*, we can find (via
egs. [19], [23], or [25]) the source function correction ASy and
the “new” source function value S%% at point k = N. Note
that this Jy = J9, since for the point where the first correction
is made only “ old ” source function values are available.

3. Outgoing part—This starts at grid point N —1 and
advances point by point, calculating the G-S source function
corrections (see eq. [23]) until it reaches the upper boundary.
To this end, the outgoing intensity at point 0 = N — 1, for each
outgoing angle (1), is first calculated according to equation (34),
but noting that here the upwind point (M) is now N, and the
downwind point (P) is N — 2. Note that the source function
value at M is the Sy°™ that has just been obtained in the preced-
ing step, while S, = S¥¢ , and S, = S3¢, . Therefore,

In_1(1) = Iy()e™ ™D G7)
DS+ Fy (DS + Fy oD

After taking into account the contributions for all the out-
going angles (1), it would be possible to obtain, as in equation
(36), the outgoing mean-intensity contribution J§* ,. However,
in order to obtain the correct total mean intensity Jyo23nd new,
one has to remember, from the incoming section, that the J,
array only contains part of the true incoming contribution to
the mean intensity. In fact, what was stored in array J, in the
incoming section was only an approximation to the correct
incoming mean-intensity contribution, simply because Iy_,(|)
was calculated there as follows:

In_ (1) = Iy_y({)e~on-2th) (38)
+ Wy 2(D)SKE 2 + Pyo (1SR + PSR,
ie., using SO'P instead of what is actually required, namely, the

“new” S¥Y value obtained in the lower boundary section.
Therefore, all we have to do in the present outgoing section in
order to end up with the correct mean intensity J3<2" "% into
array J, (for the moment at k = N — 1) is to add the following
contribution to the J, array:

1 0
M+ AT = %U) Iwydu + ASy 4, J_I‘PHl(l)dﬂ] » (39)

which can actually be done rapidly because the correction
AS, . ; and the quantities ¥, = W, ,(]) are available from pre-
vious computational steps. (Note, however, that the contribu-
tions AJi" of eq. [39] would be O if instead of the parabolic
formal solution formula [34] the linear one—i.e., equation
[34] with ¥, = O—were used). Having obtained J¢'4 24 nev (at
k=N —1), it is straightforward to apply equations (23) and
(19) to obtain the correction ASy_, and the source function
SrY,.

Before passing to the next point O=k—1 (e.g, to
O = N — 2 if the previous point k = N — 1) for calculating its
corresponding “new ” source function value via the repetition
of the very same steps that we have just described, it is impera-
tive to add (for each outgoing angle) the following correction
term to the specific intensity array I"'(u):

AL (u) = W(DAS, , (40)

Vol. 455

where both AS, = SP¥ — S¢!4 and W,(1) are available from pre-
vious computational steps. These intensities I§"(u) play the
role of the upwind intensities I,;, which appear in equation (34)
once we apply this very equation to obtain the specific inten-
sities at such next point O = k — 1. Clearly, we have to make
these specific intensity corrections before going to each next
point in order to take into account that the “new” source
function S;°¥ has just been obtained at the previous point k.
Updating the upwind outgoing specific intensities according to
equation (40) is very important. If waived, the resulting scheme
would converge at a significantly slower rate, and the ensuing
iterations would not be truly G-S iterations.

In this efficient way one moves point by point upward doing
the source function corrections as dictated by equations (23) or
(25), so that each call to our formal solution routine produces a
G-S or SOR iteration after a computing time similar to that
required by Jacobi iterations.

For the line transfer case the relevant quantity is the average
profile intensity J =3 {1, du | dve(v, wi(v, p) [with the
absorption profile ¢(v, u)], but the whole process remains
unaltered, with the exception of having to consider not only
each ray direction, but also the profile-weighted contribution
at each frequency v.

4. DEMONSTRATIVE RESULTS

This section is aimed at demonstrating the performance and
convergence properties of our G-S and SOR RT methods in
comparison with those of the broadly used Jacobi-based OAB
technique. To this end, we choose as benchmark problems the
coherent scattering and the two-level atom complete redistri-
bution cases for the constant property atmosphere limit,
noting that similar results have been obtained for more general
situations.

4.1. The Coherent Scattering Problem

The coherent scattering source function is given by equation
(11), where J is the mean intensity, B is the Planck function
(which we assume equal to unity) and € is the non-LTE param-
eter, which we assume constant. Figure 2 shows the final result
of the iterative solution performed with any of the three
methods (i.e., Jacobi, G-S, and SOR) for various values of e.
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F1G. 2—The run of the source function with optical depth for the coherent-

scattering isothermal-atmosphere problem with the indicated values of €. The

three solution methods used (i.e., the Jacobi-based OAB-technique and our

G-S and SOR methods) give the same solution, which agrees with the analyti-
cal result.
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The calculations were carried out using a one-point angular
quadrature with y = + 1/\/5, which is equivalent to Edding-
ton’s approximation. In this way we can compare directly the
numerical results for the run of the source function with optical
depth with the analytical result also overplotted in Figure 2.
This analytical solution can easily be obtained if one invokes
Eddington’s approximation (see Mihalas 1978, p. 149).

The excellent agreement in Figure 2 between the analytical
and any of the three numerical results indicates that the oper-
ator splitting methods considered in § 2 are all capable, in
principle, of providing the correct answer, even for very small
values of the non-LTE parameter e. However, it says nothing
about the efficiency and convergence properties of the methods
themselves. For that purpose we show the variation with the
iteration number (itr) of the relative true error T,, which we
define by

S(n, itr) — S
S

Here, the source function S denotes the above-mentioned
analytical result, and n indicates the number of grid points per
decade in optical depth. At the iterative stage “itr ”, T, gives the
maximum absolute relative error among all the source-function
values corresponding to each of the spatial grid points. It is
clear that as one iterates using a convergent method, the true
error T, decreases until the truncation error of the grid being
used is reached. At this iterative stage the T, versus itr curve
becomes horizontal and no further decrease takes place, simply
because each grid of a given resolution level has associated
with it a truncation error [denoted by T,(n, co)], which is equal
to the accuracy that the chosen grid and formal solution
method can provide. This is shown in Figure 3 for the case with
€ = 107% and for a grid with nine points per decade. With the
exception of the curve corresponding to the poorly convergent
A-iteration procedure, the remaining curves (i.e., the ones for
Jacobi, G-S, and SOR) become horizontal at T, ~ 3.5 x 1073,
which tells us that the accuracy of the solution in the chosen
grid is well below 1% when the parabolic short-characteristics
formal solution formula is adopted (see eq. [34]). For the com-
parative purposes that follow, we use the criterion that the
number of iterations required to reach convergence is given by
the number of iterations at which the true error curve becomes

T(n, itr) = max 41)

True Error

800 1000

0 200 400 600
Iteration Number

F16. 3.—Typical convergence properties of the various iterative schemes
considered are demonstrated in this coherent scattering example, where
€ = 107 % and the chosen grid has n = 9 points per decade.
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horizontal. In this respect, an accurate and practical criterion
for deciding when the iterative process should be terminated
has been presented by Auer et al. (1994).

As expected from the previous discussion in § 2.4, the
number of iterations that have to be performed to reach con-
vergence by means of the G-S method is a factor 2 smaller than
with Jacobi’s, while the number of iterations required by our
SOR method is about a factor 20 smaller (see Fig. 3). It is very
important to emphasize that this saving in terms of the number
of required iterations implies exactly the same saving regarding
the total CPU time, since the procedure described in the pre-
vious section actually allows G-S and SOR iterations to be
carried out virtually at the same computational cost as that
required by Jacobi’s method. This very important saving
agrees with that predicted by our order-of-magnitude esti-
mates (see eqs. [32] and [33]). To check this, Figure 4 shows
the variation of the largest absolute eigenvalue (1) of Jacobi’s
method (obtained as explained below) with the number n of
points per decade. The solid lines in Figure 4 are the fits to 4,
obtained according to equation (31) for the values of a and b
indicated. In this figure we also include the variation of 4 and a,
which are, respectively, the largest absolute eigenvalues of our
G-S and SOR methods.

It is important to emphasize that the spectral radius p pro-

vides a measure of the asymptotic convergence rate (see eq.
[301). The values of p (either A for Jacobi, 6 for pure G-S or «
for the SOR method) shown in Figure 4 are actually the esti-
mates of the spectral radius for the corresponding iteration
operator G (see eq. [7]) obtained after calculating, for itr > 1,
the ratio R (itr + 1)/R.(itr), where R, is the maximum relative
change. This actually leads to a reasonably good estimate of p
since, from equation (6), the change Au(itr + 1) = GAu(itr), the
iterations converge to the eigenvector corresponding to the
dominant eigenvalue, and the magnitude of this eigenvalue is
the spectral radius p. This, in turn, reveals a practical pro-
cedure to estimate the value of w,, for SOR: after a few pure
G-S iterations, one estimates J as indicated [ie., 6 = R_(itr
+ 1)/R (itr)] and then applies equation (26) to obtain the w-
value; finally, one continues iterating doing the corrections as
in equation (25). We have carried out a number of test calcu-
lations in order to ascertain the number of pure G-S iterations
that have to be performed before the application of the above
estimation procedure for w,, can actually yield the truly
optimal w-value. We find that, typically, one has to wait until
the maximum relative change R, is well below 0.1; for example,
for the fine-grid case shown in Figure 3 this implies about 20
pure G-S iterations. The lower and upper dotted lines in
Figure 4 show the lower (x = w,,, — 1) and upper [ = (Wop
— 1)Y?] limits for o as established by equation (27). As
expected, the estimated a-eigenvalues given by the symbols lie
withir; these two limits, while 4 and J are related according to
o~ A%

It is now of interest to show the sensitivity of our SOR
method to the parameter w. An example is shown in Figure 5
for a grid with 4.5 points per decade and for € = 107, The
value for w,,, is 1.52 and it is indeed the one that, as shown in
Figure 5a, leads to the fastest convergence. The convergence
rates for other w-values lie between this optimal rate and that
provided by pure G-S iterations. An alternative illustration is
shown in Figure 5b, where the estimated largest absolute eigen-
value o is given against the parameter w. We first point out
that, in accordance with mathematical theory (e.g., Young &
Gregory 1972), a necessary condition for the convergence of

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...455..646T

654 TRUJILLO BUENO & FABIANI BENDICHO Vol. 455
e = 1072 [a=0.97, b=1.09] € = 107* [a=0.77, b=1.56]
1.0 ) j " ) j 1.0 " " ) ’ .

0.8

FiG. 4—The variation of the largest absolute eigenvalues A (for Jacobi), J (for G-S), and « (for SOR) with the number n of points per decade for the coherent
scattering problem. For each method the symbols give the estimated eigenvalues as described in the text, while the solid line gives the fit to the estimated A values
according to eq. (31) (with the values of a and b indicated). The dashed line is § = 1%, while, in accordance with eq. (27), the two dotted lines indicate « = @y — 1 (the

lower limit for &) and @ = (@, — 1)"/? (the upper limit for «).

the SOR method is that 0 < w < 2. For 0 < w < 1 we actually
have a successive underrelaxation RT method. As shown in
Figure 5b, for 0 < w < 1 the convergence rate is worse than for
the G-S w = 1 case, and faster convergence is only possible for
overrelaxation, i.e., for 1 < w < 2. The minimum «-value in
Figure 5b occurs precisely at the w-value obtained from equa-
tion (26), i.e., at w & 1.52. Therefore, although the sensitivity is
significant, the selection criterion for the parameter w is robust
enough to guarantee the effectiveness of our SOR method.

4.2. The Role of Acceleration Techniques

In order to more than double its speed, the Jacobi-based
method of OAB is currently combined with some powerful

103 T T T T

102

10’

10°

True Error

107!

1072

1073 Lt Lty

0O 20 40 60 80 100 120
Iteration Number

acceleration of convergence techniques (see Auer 1987, 1991).
Therefore, since the SOR method may be considered as a well-
founded “extrapolation to the future” of the G-S iterations, it
is imperative to compare it with the methods that result from
combining the G-S and Jacobi’s schemes with such acceler-
ation techniques. This is what we show in Figure 6, again for
€ = 1079 and for a very fine grid with nine points per decade.
For this example, the figure shows that Ng’s acceleration
method is effective in improving the convergence rate of both
Jacobi’s and G-S methods. Notwithstanding, as seen in the
figure, the SOR method is still the best, reaching for this
example the converged solution at least 4 times quicker than
with the method that results from combining Jacobi with Ng.

0.8r

0.4 A RPN 1

0.0 0.5 1.0 1.5 2.0
]

FiG. 5—The sensitivity of the convergence properties of our SOR method to the parameter w for the coherent scattering problem with € = 107° and n = 4.5. The
estimated w-value according to the strategy described in the text is 1.52, which is the optimal one in practice, since it leads to the fastest convergence (see the solid line
with the label SOR in [a] and note the position of the minimum of the a-curve in [b]). The dotted line corresponds to w = 1.6, the dashed line to w = 1.4, and the

dash-dotted line to w = 1.25.
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FiG. 6.—The convergence properties of our G-S and SOR methods in com-
parison with those resulting from combining the Jacobi and G-S schemes with
Ng’s acceleration of convergence technique. The non-LTE parameter
€=10"%andn =9.

A similar conclusion is obtained if, instead of Ng, Orthomin’s
acceleration (Vinsome 1976; Klein et al. 1989; Auer 1991) is
used.

It is interesting to point out that when the non-LTE effects
are very pronounced (i.e., € very small) and/or the spatial grid
used is very fine, as shown in Figure 7, the effectiveness of the
acceleration techniques applied to Jacobi’s scheme is signifi-
cantly reduced, but our SOR solution method remains equally
robust, implying again gaining factors of about an order of
magnitude. Moreover, it is important to remark that, contrary
to what happens with our SOR method, the Ng and Orthomin
acceleration techniques both require the storage of a number
of arrays the size of the system and an extra (although compa-
ratively small) amount of computing time per iteration. There-
fore, our SOR method not only leads to much faster
convergence, but it also appears to be sufficiently robust to
handle complicated non-LTE radiation transfer problems in
very fine grids.

On the other hand, the method that results from combining
our G-S scheme with such acceleration techniques is very
powerful. As can be seen in the last two figures, this often leads
to a performance not too far away from that of the SOR
method. Further, one must note that in these figures, the

True Error

JNG

10 . . ! .
1000 1500
Iteration Number

F1G. 7—Same as in Fig. 6, but fore = 10712

2000
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number of iterations required by SOR to reach convergence is
actually the smallest possible one, simply because we have
carried out the calculations using the w,,-value from the very
beginning. However, in practical applications the number of
required iterations is always somewhat larger. This happens
either because one applies SOR from the very beginning by
using a nonoptimal w-value as in Figure 5a (e.g., estimating it
via eq. [26] using eq. [31] as fitting formula for & with
a ~ b ~ 1) or because one carries out a few pure G-S iterations
before applying SOR with the optimal w-value. (The possi-
bility of minimizing this number of pure G-S iterations by
using a priori estimates of w and then updating as one con-
verges will be addressed in a future paper.)

4.3. The Line Transfer Problem

In Figure 8 we show the variation with the number of points
per decade of the largest absolute eigenvalue p of Jacobi
(p = 4), G-S (p = 9), and SOR (p = ) methods for the stan-
dard two-level atom line transfer problem with a Gaussian
absorption profile. Compared with the coherent scattering
eigenvalues of Figure 4, we note that the p values for the line
transfer problem are smaller. As can be deduced from Figure 8
the various eigenvalues are related as dictated by § ~ A2 and
by the limits set by equation (27).

The last point to be noted is that, as discussed in § 3, our G-S
and SOR methods can be implemented either starting the
source function corrections at the surface or at the lower
boundary. As mentioned before, in this latter case the nonlocal
approximate operator corresponding to the G-S method is the
upper triangular part of the full A-operator, while in the former
case A* is the lower triangular part of A. In Figure 8 we show
both 6 for the upper triangular case (solid -line) and for the
lower triangular one (dashed d-line). It is not surprising that, as
seen in the figure, starting the corrections at the lower bound-
ary turns out to be slightly more efficient since, as pointed out
when discussing the physical meaning of the A-operator, the
upper triangular part of A is more significant than the lower
triangular one. This is, in fact the reason why Scharmer’s (1981)
global operator, which is constructed on the assumption that
the source function varies linearly with the optical depth, is
almost upper triangular. Although with Scharmer’s global
operator the number of iterations required to reach con-
vergence may also be relatively small, the need to construct
and to invert such an operator implies a computing time per
iteration and a memory requirement that restricts its applica-
tion to few-level RT in one-dimensional geometry. On the con-
trary, our SOR method does yield the very high convergence
rate of a mathematically founded optimal upper triangular
operator, with the ideal feature of a computing time and
memory requirement per iteration as small as that of a local
operator splitting method.

4.4. Smoothing Capability

As mentioned in the introduction, another method of inter-
est for solving RT problems (mainly for two-dimensional and
three-dimensional applications) is the multigrid method
(Hackbush 1985), for which an essential part is the use of a
basic iterative scheme capable of efficiently removing the high-
frequency components of the error.

Our only purpose here is to demonstrate that our G-S
method has comparatively excellent smoothing capabilities,
which makes it the iterative method of choice for the smoothing
part of multigrid RT codes. In order to illustrate this, we again
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FIG. 8.—Same as in Fig. 4, but for the two-level atom line transfer case. The dashed line for § is for the case in which the G-S process begins at the surface point,
while the solid line for é corresponds to the case in which the G-S process starts at the lower boundary point.

choose the coherent scattering problem for the case with
€ = 10 ° and start the iterative calculation in a fine grid with
nine points per decade with a highly fluctuating initialization
whose error (calculated with respect to the fully converged
solution in the grid used) is given in Figure 9a. Figure 9b shows
that after 10 Jacobi iterations the high-frequency error com-
ponents are still very significant. On the contrary, Figure 9c
demonstrates that after only four G-S iterations, the remaining
error is already very smooth. Additional information concern-
ing the application and behavior of our G-S scheme in multi-
grid RT, both for two-level and multilevel atomic
configurations, will be given in a future paper (for an advance
report of some results, see Fabiani Bendicho et al. 1994).
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5. CONCLUDING REMARKS

The RT methods developed in this paper have the ideal
property of yielding the high convergence rates of nonlocal
upper (or lower) triangular approximate operators, but with a
memory requirement and a computing time per iteration
similar to those of a local operator splitting technique. They
neither require the actual construction of such nonlocal oper-
ators nor the application of any matrix inversion procedure.
Therefore, they are also particularly suitable for multidimen-
sional geometries.

In order to carry out RT calculations using our G-S and
SOR iterative schemes, one has only to calculate the diagonal
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FiG. 9—The variation with 7 of the error in the chosen grid, i.e., of v = S(n, itr) — S(n, o). The non-LTE parameter € = 10~%,and n = 9. The v for itr = 0, i.e., the
initialization error, is given in (a); (b) gives v after itr = 10 iterations with the optimal local operator method; (c) shows the error after iterating 4 times with our G-S

scheme.
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elements of the true A operator and to perform formal solu-
tions of the transfer equation in a way similar to that explained
in § 3. The novelty here lies in that the source function correc-
tions are to be performed within the formal solution solver
itself. One possibility is to do this as described in § 3, i.e., in a
way such that each call to the formal solution solver produces
as an output one G-S or optimal SOR iteration. However, it is
important to point out that it is possible to develop still faster
G-S-based methods. For instance, as we shall show in a forth-
coming publication, one can achieve a factor 2 of additional
improvement by using a modified formal solution solver such
that each call to it produces as an output two truly G-S or SOR
iterations: one after the incoming pass (with a convergence rate
equivalent to that of a lower triangular approximate operator
method) and the other iteration after the outgoing pass (with a
convergence rate equivalent to that of an upper triangular
approximate operator method).

Finally, we remark that the methods presented here are
especially attractive because of their direct applicability to a
variety of complicated RT problems of astrophysical interest.
In future publications, we will show how these methods can be
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extended to the nonlinear multilevel atom case, to two- and
three-dimensional geometries, and to the transfer of polarized
radiation.
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