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ABSTRACT

Aims. Determination of horizontal velocity fields on the solar surface is crucial for understanding the dynamics of structures like
mesogranulation or supergranulation or simply the distribution of magnetic fields.
Methods. We pursue here the development of a method called CST for coherent structure tracking, which determines the horizontal

motion of granules in the field of view.

Results. We first devise a generalization of Strous method for the segmentation of images and show that when segmentation follows
the shape of granules more closely, granule tracking is less effective for large granules because of increased sensitivity to granule
fragmentation. We then introduce the multi-resolution analysis on the velocity field, based on Daubechies wavelets, which provides a
view of this field on different scales. An algorithm for computing the field derivatives, like the horizontal divergence and the vertical
vorticity, is also devised. The effects from the lack of data or from terrestrial atmospheric distortion of the images are also briefly

discussed.
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1. Introduction

Determining the flows on the surface of the Sun has trig-
gered many efforts over the last decade. Of special concern was
determination of granules motions that can reveal horizontal
flows on scales larger than, typically, twice their horizontal size
~2000 km. This scale is small enough to provide observers of the
Sun’s surface with a detailed sampling of the large-scale flows,
such as supergranulation, and therefore makes it very interesting
to determine granule motions.

However, from the viewpoint of fluid mechanics, granules
are not passive scalars whose motions trace that of the fluid;
rather, they are structures in intensity or, assuming perfect corre-
lation with temperature, coherent structures of temperature. But
the evolution of the temperature field is the result of radiative, as
well as advective, processes. It is only in case that the latter dom-
inates that the motions of granule can be associated with hori-
zontal flows. Using numerical simulations in a large horizontal
box, we have shown that granule motions are highly correlated
with horizontal flows when the scale is larger than ~2500 km
(Rieutord et al. 2001); below this scale, granule motions should
be considered as (solar) turbulent noise.

Once the equivalence of plasma motion and granule motion
is assumed, one is left with the problem of measuring the latter
motion. This is not an easy task owing to the small angular size
(~1.3"”) of the structures. Ground-based observations are sen-
sitive to atmospheric turbulence, while space observations are

expensive owing to the (relatively) large aperture needed for re-
solving granules.

Basically, two techniques have been used to measure hori-
zontal velocity fields: either the tracking of individual granules
(Strous 1995) or local correlation tracking (November & Simon
1988). The results of these two techniques have been compared
(Simon et al. 1995; Roudier et al. 1999) and found to broadly
agree; in the test using numerical simulations (Rieutord et al.
2001), they show the same degree of correlation with the ac-
tual plasma flows. However, detailed examinations (Simon et al.
1995; Roudier et al. 1999) have demonstrated worrying differ-
ences, especially when field derivatives like vertical vorticity and
divergence are computed.

In fact from the point of view of signal processing, these two
methods differ fundamentally. On the one hand, granule track-
ing emphasises the importance of the granule, gives no signal
in between granules, and yields a velocity field that is sampled
randomly following the distribution of granules. On the other
hand, local correlation tracking (LCT hereafter) treats granules
and intergranules on an equal footing and yields a velocity field
on a regular grid. Broadly speaking, the two methods differ in
the interpolation process, which unfortunately influences the fi-
nal result.

In this paper we present and analyse in some detail an al-
gorithm based on granule tracking which is able to give a re-
construction of the velocity field at all scales larger than the
sampling scale. This algorithm has already been introduced in
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Roudier et al. (1999) in a preliminary version. We call it CST
for coherent structure tracking to underline its relation with the
physics lying behind it. Such an algorithm is close in its prin-
ciples to particle-imaging velocimetry (PIV), as used in experi-
mental fluid mechanics (e.g. Adrian 2005).

We developed this algorithm for three reasons: the first is
obviously because it gives a different view of the data than does
the LCT algorithm, since many interpolation problems may in-
fluence the final results (see the discussion in Potts et al. 2003).
The second one is that it may be used on raw data and gives an
estimate of the error introduced by atmospheric distortion (see
the companion paper, Tkaczuk et al. 2007, in which this point
is developed). Finally, it offers the possibility of selecting spe-
cific structures according to their nature, size, lifetime, etc. and
of studying their motion.

In the next section we discuss the different steps of the algo-
rithm, especially the segmentation and interpolation processes,
and also point out the effects of regions lacking data. Discussion
and conclusions follow.

2. The CST algorithm

Before describing the different steps in some detail, let us recall
the five main steps of this algorithm:

— segmentation of the image and granule identification;

— measurement of velocities at granule locations;

— reconstruction of the velocity field;

— calculation of field derivatives (like the z-component of the
vorticity and divergence);

— estimation of the noise.

We now go into detail for each one in turn.

2.1. Segmentation and granule identification

To identify a granule one needs a criterion with which to decide
whether a given pixel belongs to a given structure or not. This
criterion needs to be local in order to avoid threshold effects due
to large-scale variations in intensity, which either come from ter-
restrial atmospheric effects, solar acoustic waves, or even mag-
netic fields.

A classical criterion is based on detecting local maxima of
the intensity through the curvature C = Iy — I; — (I; — 1))
(Strous 1995; Roudier et al. 1999). This criterion has the ad-
vantage of being simple, robust, and therefore quite efficient.
However, comparing the detected patterns with the original im-
age shows that this criterion underestimates the size of the gran-
ules. It is therefore interesting to know whether this criterion can
be improved. An objective test of this improvement will be that
the lifetime of the granules is increased.

Another method has been proposed by Bovelet & Wiehr
(2001, hereafter referred to as BW), with a multiple-level track-
ing algorithm. It is based on the use of multiple-threshold levels
applied to the intensity image. The granules detected at a high
level are gradually extended to adjacent pixels whose intensity
exceeds the lower level, while keeping a minimum distance with
respect to other granules. This approach, which is very similar to
a watershed-based segmentation (Vincent & Soille 1991; Soille
1999), yields sizes and shapes of granules that conform more to
direct observation of the image. Nevertheless, the number of de-
tected granules is less compared to the Strous algorithm because
this method is based on the intensity.
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Fig. 1. Comparison of the result of different segmentations on the same
test image. From fop to bottom and left to right we have : the origi-
nal image, the result of Strous’s method, the result of the BW method,
the result of the proposed method. Note that BW leaves some granules
undetected.

The Strous-curvature criterion is more efficient at separating
the granules. It consists in selecting the pixels whose local mini-
mal curvature is not negative. This curvature is calculated in the
four directions defined by the 8 neighbours of the considered
pixel. The underestimation of the granule size stems from real
granule’s extension being greater than the positive curvature re-
gion. We thus propose a new segmentation algorithm (hereafter
termed CD) that combines both ideas of BW and the Strous al-
gorithm. It consists in the following steps:

— Calculation of the “minimal curvature image” : for each
pixel, the minimal curvature among the four directions is
computed.

— Detection of the granules as non negative curvature pixels in
the minimal curvature image.

— Extension of the detected granules with points whose mini-
mal curvature value is greater than a given (negative) thresh-
old f.x, while keeping a minimal distance of one pixel
between each pair of granules.

The last step can be reached using the watershed algorithm
on the minimal curvature image, with an additional condition
requiring that the curvature remains above fy;.

This new approach leads to a segmentation with the same
granules as Strous’s approach, but with a controllable size.
Strous’s segmentation is obtained with #.,; = 0. Decreasing the
value of 7. extends the granules. In Fig. 1 we illustrate the dis-
cussed segmentation method using Pic-du-Midi data'. This fig-
ure illustrates the way our segmentation extends that of Strous
and closely follows the shape of granules.

To study the influence of the segmentation on the lifetime
of granules, we plotted the statistic of the lifetime for the three
methods : the Strous method, BW method, and our proposed
method. For our method, we took three different threshold val-
ues: fext = 0, texe = —0.1, and txc = —0.3 (Fig. 2).

' As for all examples needing solar images, we used the series
obtained at Pic-du-Midi on 20 September 1988.
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Fig. 2. Comparison of the effect of different segmentations on lifetimes
of granules. BW refers to the Bovelet and Wiehr method while CD
refers to our method (see text); the associated number is the extension
threshold parameter fey;.

This figure shows that, broadly speaking, the segmenta-
tion does not influence the statistics of lifetimes very strongly.
However, some differences can be noticed in the detail. The
BW algorithm, by detecting less granules, shows a deficit of
short-lived and long-lived granules; on the other hand, our al-
gorithm eliminates long-lived structures when used with too low
a threshold. We understand this behaviour as the result of en-
hanced splitting of larger structures.

In conclusion, Strous’s algorithm seems the most efficient for
our purpose, and it can be improved in the way we described, but
at the price of increasing the computation effort a lot.

Once the image has been segmented, each granule needs to
be identified. This operation, although very simple, can be quite
time-consuming since all pixels should be tested at least once.
The most efficient way we have found to deal with this opera-
tion is to use a recursive algorithm, letting granules grow from a
single pixel. A pixel belongs to a granule if it shares at least one
side with another pixel of the granule.

2.2. Measuring the velocities

Once the granules have been identified, the (x, y) coordinates of
their barycentre are computed. Hence, each image is converted
into a set of points X;, describing the position of the granules
at time #,,. These data may be completed by the set of granules
surfaces, shapes, etc.

The set of points {X;,} is then divided into trajectories

{Xi(k)»” }n;SnSn[ .

This notation means that granules of index i(k) are in fact the
same granule as the one that follows the kth trajectory; it appears
at time #(n;) and disappears at time #(rn;).

Trajectories are identified by comparing each position X;
on two consecutive images and putting nearest neighbours to-
gether provided their position does not differ more than a given
threshold that is determined by an upper bound on the velocity.
Typically, we reject velocities higher than 5 kms™'.

If one disposes of a long time series of images, it may be
useful to determine the time evolution of the velocity field. For
this purpose a time window of width Af needs to be used and
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Fig. 3. Trajectories of granules in a five-minute time sequence. Top:
Granule displacements in a small subfield. Bottom: enlarged view of
a granule trajectory. Data are from the 1988 Pic-du-Midi series (e.g.
Muller et al. 1992).

trajectories are restricted to time windows. Hence, for a given
time window, one derives a set of N trajectories:

{{Xi(k),,l}ﬁ;l,ﬁn{, t < t(m), Hng) < t+ At}

existing in the field during the time [z, + Af]. We show an ex-
ample of such a set of trajectories in Fig. 3. We clearly see from
the enlarged view that granule motion is dominated by an erratic
motion that mixes (Earth) atmospheric noise with the turbulent
random flow of solar convection.

From this set we derive a mean velocity associated with each
trajectory; the kth trajectory gives the velocity

vy = Kiwn = Xiwm
o) = t(ny)
which we associate with the mean position of the trajectory
1 S
X, = Xty n-

nz—n1+1n

—
Hence we end up with the set

Vie Xihiz1 v

which describes the velocity field during the time interval
[2, 1+ At].

The values of the velocities are of course not uniformly dis-
tributed in the field of view and we need to know how they con-
strain the velocity field at a given resolution: small-scale compo-
nents are weakly constrained, while large-scale ones are highly
constrained. The maximum resolution for the velocity field is
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Fig. 4. Mean distance between velocity vectors as a function of the time
window used for the measurement. The line shows the law (d) « 1/VAt.

given by the density of trajectories and can be estimated by the
mean distance (d) between the X}. As the time window At is in-
creased, the maximum resolution increases according to the law

(dy o 1/VAt as clearly shown by Fig. 4. This law arises because
granules cover the Sun’s surface permanently. From it, we can
derive the maximal spatial resolution for a given time resolu-
tion. Indeed, from Fig. 4, it turns out that the mean volume of
space-time occupied by one granule is ~1200 Mm? s.

This value is useful for determining the highest time res-
olution that can be allowed for the large-scale velocity fields.
Indeed, as pointed out in Rieutord et al. (2001), granules cannot
be used to trace plasma flow under a scale of 2.5 Mm (except
in the case of very rapid flows like “explosion” of granules);
thus the determination of a large-scale flow needs a mesh size
not smaller than 1.25 Mm. This means that each grid point will
have a have a trajectory only if At > 768 s. Conservatively, we
estimate that the time resolution cannot be higher than 15 min.

Often time resolution is not needed and therefore At is much
larger than 15 min. In such a case, several velocities may be
given by granules appearing at a given place on the grid. We
then use the average velocity of the granules as the measure of
the local velocity. This introduces another quantity, namely the
rms fluctuation around this mean. This rms velocity is a measure
of the proper velocity of granules and therefore a proxy of the
local strength of turbulent convection.

2.3. Derivation of the velocity field by MRA

Once the velocities in the field of view are determined, we need
to know what kind of flow they represent: for instance, vortices,
shear layers, diverging sources, etc. For this purpose we need to
determine the best continuous differentiable field that approxi-
mates the data. The determination of such a field can be done in
various ways, but we wish to introduce no information or a min-
imum of into this process. We also wish to avoid the propagation
of errors and noise in the field of view.

We have found that wavelet multi-resolution analysis (MRA)
is an interesting tool for this purpose, because it gives a decom-
position of the signal at all the scales allowed by the size of the
box and therefore gives a good view of all the components of the
signal (Mallat 1989; Meyer 1987).

M. Rieutord et al.: The CST algorithm

The basic idea of a “multi-resolution representation”
of L*(IR) is to project a signal f on a “wavelet orthonormal basis”
of L>(R), at which point it is possible to extract the “difference in
information” between two successive approximations of the sig-
nal (approximations at the resolution 2/ and 2/*!). The wavelet

orthonormal basis is a family of functions V2iy(2/x — k) ez
built by dilations and translations of a unique function ¥(x):
the analysing wavelet. The decomposition thus obtained is this
MRA. The signal can be reconstructed from this representation
without any difficulty. We give a minimal background to this
technique in appendix A.

Now we need to specify the choice of the analysing wavelet.
As in many problems of image processing, we choose the
Daubechies wavelet because of its compact support. This prop-
erty is important since it minimizes border effects and interac-
tions between patterns of the signal during the filtering process.
Moreover, using these wavelets also preserves the location of
zero-crossing and maxima of the signal during the analysis, a
property that results in mutual suppressive interactions across its
different scale representations and superior robustness in noisy
environments (Sahiner & Yagle 1993). Thus, the contours of
the image can be determined efficiently. We understand that this
property is important in image processing since the features of
the image are preserved after filtering. For the velocity fields we
are dealing with, this is also an interesting point, because we
wish to identify flow structures like divergences and vortices.

Finally, wavelet analysis also allows us to determine the rel-
evance (or the reality) of flow structures on different scales. One
may indeed apply the MRA to the velocity field and the noise
field. Then, for each scale of the flow, we can compare the details
and the amount of noise to see whether the details are relevant
or are simply noise structures.

2.4. Curl and divergence fields

Once an approximation of the velocity field is known, it is use-
ful to detect flow patterns that may be important for the dy-
namics of the fluid. As the (measured) velocity field is purely
two-dimensional, two quantities are relevant for enhancing flow
structures: the divergence D = 0,v, + d,v, and the z-component
of the vorticity { = 8,0, — Oyv,.

The way derivatives can be computed can be explained with
a one-dimensional example. Let us consider the approximation
on scale j of the signal f

£ = D (flel) o100, (1)

k

where k represents the position of the wavelet. Differentiating
this expression yields

df; - de!
@ = 2 5

k

In the Galerkin method, this formula would be sufficient; how-
ever, in MRA the derivative of a function approximated with
some resolution has meaning only in the same functional space,
that is, with the same resolution. Therefore, dfj/dx also needs to
be projected onto that space. Thus we are interested in

d¢£>.

(o5
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Fig. 5. Isoline plot for the z-component of the curl of the velocity field v, = —y,v, = x with some values of v randomly set to zero (black dots in the
field). To the left, the scaling function 4¢ of Daubechies wavelet is used; to the right we use 3¢. The main difference between these two wavelets is
the width of their support, twice larger on the right. Note the border effects in both figures as well as the patterns introduced by the absence of data
and their dependence on the support of the wavelet. The large blank areas are at the constant value of 2, as expected; solid lines represent isolines
of a value different from 2 and dotted lines show negative value isolines. X and Y units are grid points.
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Fig. 6. To the left, the velocity field with a small mesh size (713 km) is complete with 83% of data, while on the right, using a larger mesh size
of 1223 km, the velocity field is complete to 99%. Patterns of velocities are easily identified between the two. We used a time interval of 15 min.

It therefore turns out that the discrete approximation of the
derivatives can be easily derived from that of the original func-

tions by a simple matrix multiplication. If S ]i = < f |¢£> is the

discrete approximation of f on scale j and S,'{’ the discrete
approximation of df/dx on the same scale, then it follows that

S =273"nasi, ©))
]
where
+00 d
r = f P(x — l)—¢dx.
o dx

These numbers can be computed through an algorithm described
in Beylkin (1992).

We show the computations of the curl field on a simple given
velocity field in Fig. 5, namely v, = -y, v, = x. We see that,

except for the border effects due to the finite size of the filter,
value 2 is correctly restored.

2.5. The role of “holes”

One of the problems arising when reconstructing the velocity
field comes from the presence of bins without data. Such bins
produce structures in the divergence and curl fields. A simple
illustration of the effect is given in Fig. 5 where the curl of a
solid rotation velocity field is plotted. This figure shows the im-
portance of the compact support of the wavelet in limiting the
propagation of errors.

Let us now consider some real data taken from the
Pic du Midi data set (see Roudier et al. 1999, for details).
Considering the velocity field first, the effects of empty bins is
not dramatic as may be seen in Fig. 6; velocity patterns are in-
deed not affected much by holes. This is not the case for the



692

Y (Mm)

Y (Mm)

0
0 10

20 30 40
X (Mm)

M. Rieutord et al.: The CST algorithm

Y (Mm)

20
X (Mm)

Y (Mm)

0
0 10

20 30 40
X (Mm)

Fig. 7. Divergence of the velocity field shown in Fig. 6. As in Fig. 6, on the left we have the more resolved, but less complete, sample and on the
right the less-resolved, but more complete, sample. In the first row the data have been only slightly filtered (they are projected on the space j = 1),
and one can hardly identify any common structure in the two plots. However, we clearly see some common features between the two plots when

considering the low frequency j = 3-component.

divergence where we see, in Fig. 7, that when the number of
empty bins is increased, the patterns hardly remain identifiable.
Only after a strong filtering can one recover similar patterns.

The foregoing example illustrates what may be at the origin
of the worrying differences found by Simon et al. (1995) be-
tween feature tracking and LCT, namely an interpolation prob-
lem emphasised by considering differentiated fields. The two
methods will converge to similar results only when these effects
are overcome, which means that time or space-averaging is large
enough. Indeed, empty bins disappear either when the sampling
grid is coarse enough or when the time resolution is low enough
(see end of Sect. 2.2).

3. Discussion and conclusions

In this paper we have presented the coherent structure tracking
algorithm aimed at reconstructing the horizontal velocity field
on the solar surface from the granule motions.

We first discussed the role of segmentation and described
a way to generalise Strous algorithm. We have shown that a
segmentation that follows the shape of granules more closely
is more sensitive to the splitting of large granules and that, as
far as velocity measurements are concerned, the Strous criterion
remains the most efficient. We then showed that the reconstruc-
tion of the velocity field is a delicate process because it is subject

to many constraints. Indeed, granules do not sample the field of
view uniformly, and reconstruction of the velocity field, along
with its derivatives like divergence or curl, requires some inter-
polation. There are many ways of performing such an opera-
tion; however, classical methods, like polynomial interpolation,
would propagate errors and noise everywhere. We thus selected
a method based on MRA which projects data onto Daubechies
wavelets. The finite support of these functions limits the effects
of noise and error propagation: sides and regions lacking in data
have a limited influence. Moreover, the signal is decomposed at
different scales through a filtering process. At each step the fil-
tered field and the remaining details can be viewed and com-
pared.This representation is particularly relevant for turbulent
flows, since the relation between amplitude and scale is of cru-
cial importance for constraining models of these flows.

We also related the minimum size of the velocity mesh grid
to the time resolution. We thus found that, typically, one gran-
ule trajectory occupies a “volume” of 1200 Mm?s. When the
“space-time” resolution does not reach this limit, many granules
contribute to the velocity in one mesh point. Their mean veloc-
ity is considered as the true local velocity, but local fluctuations
around this mean gives some information on the local strength
of convection.

We did not discuss here the influence of the Earth’s atmo-
spheric turbulence on the determination of the velocity fields
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and derivatives. Surely this is an important point: typical atmo-
spheric distortion of images induces, in good seeing conditions,
feature motions of (0 13. For a long-lived structure, say 10 min,
this means an uncertainty of the velocity as high as 220 m/s. This
is quite large compared to a typical velocity of 600 m/s. Hence,
atmospheric noise is a non negligible part of the data and a care-
ful determination of its influence is needed. This is the subject of
the companion paper to which we refer the reader (see Tkaczuk
et al. 2007).

Finally, although this has not been tested yet, we think that
the CST algorithm can be fruitfully used to track the magnetic
features of the photosphere, like network bright points or even
determine velocities of features in the solar atmosphere.

Appendix A: Fundamentals of multi-resolution
analysis

We give in this appendix the basic background of MRA and refer
the reader to textbooks for a more complete presentation (e.g.
Daubechies 1992; Mallat 1999). An MRA is a sequence {Vj}jez

of closed subspaces of square-integrable functions, L>(IR), such
that the five following properties are satisfied, Vj € Z:

1. Vj C Vj+1.

V; can be interpreted as the set of all possible signal approx-
imations at the resolution 2/ (a resolution r is defined by the
size 1/r of the smallest detail). Thus, if the smallest detail
in V, has size 1, it is possible to read on V; details of size
27,

It follows from this property that the approximation of the
signal at resolution 2/*! contains all the necessary informa-
tion for determining the same signal at a lower resolution 2/
(plus additional details).

2. Uv, is dense in L2(R)  and ﬂv, - {0}
jeZ JjeZ
In other words, when j increases, the approximated signal
converges to the original signal. Conversely, if j (the reso-
lution) decreases, the approximated signal converges to zero
(it contains less and less information).

3. fWeV;= f2x)e V.

This property defines 2 as the rate of scaling change (the ratio
of two successive resolution values).

4. fx)eV;= f(x-27k)eV;, VkeZ.

This property characterizes the invariance under discrete
translations: when the signal is translated by a length propor-
tional to 27/, the approximations are translated by the same
amount and no information is lost in the translation.

5. A function ¢ exists in Vj such that {¢(x — k)};cz is an or-
thonormal basis of V. Hence, the family {2//2¢(2/x — k)};.z
is an orthonormal basis of V;. Function ¢ is called the scaling
function of the multi-resolution representation.

Now, let us define W; as the orthogonal complementof V;in V,
(it contains the additional details that are in V;,; and not in V).
There exists a function ¢ (the wavelet) such that {¥/(x — k)}kez
is an orthonormal basis of Wy and {2//2(2/x — k)} ez is an or-
thonormal basis of L>(IR).

One studies a signal f of L>(IR) by projecting it orthogonally
on the collection of V; and W;. This procedure can be carried out
according to the pyramidal algorithm presented below.

First, let us define the two filters & and g that can be deduced
from the MRA. This analysis allows us to determine a function A,
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which is the impulse response of some 2r-periodic low-pass fil-
ter H defined with the scaling function: H(w) = $(2w) /a(w). On
the other hand, one defines function g by G(w) = @(2«))/5(«)),
g being the impulse response of the 2z-periodic high-pass fil-
ter G. The filters H and G are quadratic mirror filters and are
linked by the relation G(w) = e “H(w + ), giving g(n) =
(=D!'"h(1 = n) for the impulse responses. Then, the pyrami-
dal architecture for computing the wavelet representation can be
easily written as:

— suppose that f(x;) belongs to the Vo (f(x;) = fo(x;) approx-
imation of the signal at resolution 1) and decompose f(x;)
onto V_; and W_y;

— the decomposition onto V_; consists in a convolution by
the filter A, such that h(n) = h(-n), and a decimation (i.e.
only one out of every two sample is retained); we obtain
the N/2—sampled so-called approximation at resolution 1/2
equal to

N
Form) = Y (k= n)fo(n) € Vi,
n=1

— the decomposition onto W_; consists in a convolution by fil-
ter g (such that g(n) = g(—n)) and a decimation; we obtain in
the same way

N
d-y(m) = Y G2k =m)fo(n) € Wo;

n=1

this is the detail at resolution 1/2, that is to say the “differ-
ence in information” between fy(n) and f_;(n); it also has
N/2 samples.

By repeating the same sequence, we obtain the approximation
and the detail at resolution 1/22:

N/2

Falw) = Y h(2k = m)foa(n) € Vs

n=1
and

N/2

do(n) = ) G2k -n)f () € W,
n=1

and so on.

After a number J of iterations to be defined by the problem,
we have decomposed fy into d_;, d_3,...,dy, and fj.

Let us finally mention that reconstruction of fy(n) from the
details and the last approximation is just as easy and has appre-
ciable quality. One has to iterate (starting from j = J):

M M
fim =2 Y 1= 20£-1(0) + " gln = 200310 ),
k=1 k=1

fj-1 and d;_; being sampled in M points.

The MRA can be generalised to two dimensions for image-
processing applications. We can define a sequence of multi-
resolution vector spaces and the approximations of a signal
f(x,y) € L*(IR*) (Mallat 1989). Since the image under study is
bounded, we choose ¢ with a compact support (i.e. vanishes out-
side a finite region). In that case, filters 4 and g have only finitely
many coeflicients that satisfy the MRA conditions (Daubechies
1992). Functions ¢ and ¢ become more regular as the number
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of coefficients n increases (the case of n = 1 corresponds to the
discontinuous Haar basis). It has been proved (Daubechies 1992)
that the regularity of ¢ and ¢ increases linearly with n. By choos-
ing n = 8, we obtain a good compromise between regularity and
support width.
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