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ABSTRACT

Context. The determination of horizontal velocity fields at the solar surface is crucial to understanding the dynamics and magnetism
of the convection zone of the sun. These measurements can be done by tracking granules.
Aims. Tracking granules from ground-based observations, however, suffers from the Earth’s atmospheric turbulence, which induces
image distortion. The focus of this paper is to evaluate the influence of this noise on the maps of velocity fields.
Methods. We use the coherent structure tracking algorithm developed recently and apply it to two independent series of images that
contain the same solar signal.
Results. We first show that a k − ω filtering of the times series of images is highly recommended as a pre-processing to decrease
the noise, while, in contrast, using destretching should be avoided. We also demonstrate that the lifetime of granules has a strong
influence on the error bars of velocities and that a threshold on the lifetime should be imposed to minimize errors. Finally, although
solar flow patterns are easily recognizable and image quality is very good, it turns out that a time sampling of two images every 21 s
is not frequent enough, since image distortion still pollutes velocity fields at a 30% level on the 2500 km scale, i.e. the scale on which
granules start to behave like passive scalars.
Conclusions. The coherent structure tracking algorithm is a useful tool for noise control on the measurement of surface horizontal
solar velocity fields when at least two independent series are available.
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1. Introduction

Movies of the solar surface show that it is a place of intense tur-
bulent fluid flows where three major scales (granulation, meso-
granulation, and supergranulation) have been pointed out. In or-
der to better understand the underlying dynamics, it is crucial to
be able to measure the velocity fields. As far as horizontal flows
are concerned, the basic techniques have relied on measuring
the displacement of granules that, as shown by Rieutord et al.
(2001), trace the fluid flows on scales larger than 2.5 Mm.

Two algorithms have been devised to transform a time se-
quence of images into a sequence of horizontal velocity fields
maps. These are the LCT algorithm (i.e. local correlation track-
ing, see November & Simon 1988) and the CST algorithm (co-
herent structure tracking, see Rieutord et al. 2007, hereafter
referred to as Paper I).

When the surface velocity field is known, one is usually in-
terested in identifying/following the dynamical structures of the
flow — like vortices, upwellings, or downwellings. The iden-
tification of these structures demands, however, computing the
velocity gradients like the divergence or the vorticity. In Paper I,
it has been pointed out that such quantities are very sensitive
to the noise induced by terrestrial atmospheric distortion, since
they are derivatives of the velocity field. The use of the velocity

field to describe the dynamics of the solar surface thus needs
to be complemented by an error analysis that both evaluates the
significance of the observed dynamical features and gives a way
to eliminate, or at least reduce, the impact of errors.

The aim of this paper is to analyse the consequences of er-
rors in the final result of velocity, vorticity, and divergence fields.
As mentioned above, the main source of errors comes from the
distortion of images induced by the Earth’s atmospheric turbu-
lence. The case of errors or, equivalently, the precision of mea-
surements has already been discussed for the LCT algorithm by
November & Simon (1988), who mentioned errors the order of
20 m/s on the velocity field. Further work by Simon et al. (1995)
showed that this precision was certainly largely overestimated.
More recently, Potts et al. (2003) investigated the case of inter-
polation errors, associated with the LCT algorithm, which also
spoil the final result. Here, we focus on the CST algorithm and
try to give a neat picture of the influence of the Earth’s atmo-
spheric distortion on the measurement of the velocity fields on
different scales.

We organised the paper as follows. Using two independent
series of images of the solar surface, we first evaluate the noise
induced on the positions of the granules and how image pre-
processing can reduce it. We then focus on the way the noise
influences the final velocity fields on different scales and analyse
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Fig. 1. View of the region used for the tests. X and Y scales are in arcsec.

its propagation up to the curl and divergence maps. Conclusions
and outlooks follow.

2. Observations

We use a time series of images obtained on June 5, 1993 at the
SVST (Swedish Vacuum Solar Telescope), Observatorio Roque
de los Muchachos, La Palma (data courtesy of P. Brandt, see
also Simon et al. 1994). This data set has already been studied
by many authors (Sobotka et al. 1997a,b; Sobotka et al. 1999a,b;
Dorotovič et al. 2002; Getling & Brandt 2002; Roudier et al.
2003). The original series consists of 1868 image pairs of size
1310×970 pixels taken at λ = 468±5 nm. The time between two
pairs of images is close to 21 s. Images from a pair are separated
by a few seconds (3 s on average and always less than 14 s).
The pixel size is 0.′′125, and the spatial resolution is near the
diffraction limit 0.′′25. The field of view is 2.′7× 2.′0. However,
the instrument leads to a rotation of the field of view, and the
area observed on the Sun at the beginning of the time series is
different from the one at the end. The rotation centre is located
on a pore at pixel coordinates (590, 102) (not in the field-of-view
used here).

For our investigations described below, we used a subsample
of 210 pairs of frames (images 841 to 1262), covering ∼77 min.
In Sect. 6, slightly more data have been used (images 800 to 1298
corresponding to a ∼87 min sequence). As shown in Fig. 1, we
extract a region of 401 × 401 pixels centred on a (magnetically)
quiet zone.

The main advantage of this data set is that it contains two
independent sequences of images that can be considered as
representing the same solar signal. The only difference comes
from the Earth’s atmospheric distortion, the effects of which can
thus be analysed. Moreover, as shown by Fig. 2, image quality
varies during the sequence. Although the contrast remains al-
most constant, we see that the amplitude of distortion increases
after t = 45 min. We thus have at our disposal a “good” se-
quence where mean distortion is about 0.5 pixel and a “bad” se-
quence, where mean distortion reaches an amplitude of 2 pixels.
In the following when we refer to “good” data, we mean the first
45 min, while “bad” data will designate the remaining sequence.

3. Sources of errors in CST

In the CST method, errors are introduced through the segmen-
tation (i.e. through determination of the granule positions) and

Fig. 2. Indices of image quality. Contrast (solid line) and distortion am-
plitude (dashed line, scale on right). Distortion is the rms displacement,
evaluated with local correlation tracking, between two images of a pair.

through interpolation done in order to obtain a velocity field
sampled over a regularly-spaced grid. The precision at which
the velocity field can be measured thus depends on:

– the precision at which a granule position is determined;
– the duration of granule tracking;
– the temporal resolution (time interval between velocity

maps);
– the spatial resolution of the grid used to sample the velocity

field.

This list shows that the CST algorithm allows us to identify all
the crucial steps and thus to follow the propagation of errors
from the beginning to the end of the computation.

4. Standard deviation of granule positions
The first step in the error analysis is to estimate the error on the
granule positions1. We first apply it to the raw data, and then use
it to estimate the performances of pre-processing steps that can
be performed before granule segmentation, namely on the image
sequences.

4.1. Method
To estimate the standard deviation on granule positions, we use
pairs of images. Because of their quasi-simultaneity, they rep-
resent the same solar surface, and all the differences between
them come from atmospheric distortions, instrumental effects, or
processes applied on the data.

After the segmentation step, the algorithm identifies gran-
ules present in both images of the pair. We then simply mea-
sure the distance between two identical granules. More pre-
cisely, we consider that the position of a granule is controlled
by two random variables (xi, yi) for which we have two realisa-
tions. We thus construct two other random variables (δxi, δyi) =
(xi,1 − xi,2, yi,1 − yi,2), whose variance is just twice that of (xi, yi).
Thus with a pair of images we can estimate the mean error over
the field of view in each direction x and y by

σx =

√√√
1

2N

N∑
i=1

(xi,1 − xi,2)2, σy =

√√√
1

2N

N∑
i=1

(yi,1 − yi,2)2,

and the mean displacement δr =
√
σ2

x + σ
2
y.

1 By granule position we mean the position of the centre of gravity
of the granule in the segmented image.
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Fig. 3. The normalized intensity contrast versus the rms displacement
of granules between the two images of each pair.

Fig. 4. Mean distance between granule centres of gravity for each im-
age pair versus the mean displacement due to atmospheric turbulence
estimated by local correlation (one point per image pair). Both displace-
ments are in pixels. The solid line shows the line of equation y = x and
the dotted line is a linear fit over the points.

These quantities are clearly estimates of the image quality
through atmospheric distortion. Interestingly enough, we com-
pared this estimate with the intensity contrast usually used to
indicate image quality. As shown in Fig. 3, the correlation be-
tween the two indicators is rather poor, meaning that they are
largely decoupled although they both come from atmospheric
turbulence! We interpret this result, tentatively, as showing that
different layers of the Earth’s atmosphere control the contrast
and the distortion.

Furthermore, we compared (see Fig. 4) the displacement of
granules with the displacement field derived from a local cor-
relation tracking (using an FWHM of 20 pixels) between the
two images of a pair. As expected, the correlation is much better
(∼0.96).

4.2. Application to pre-processing

One of the interesting applications of the error estimate on the
granule position is to allow the evaluation of the effectiveness of
various pre-processings applied to the images before estimating
the granule position. A measure of σx before and after a given

Fig. 5. Estimation of the error σx on the determination of the centre of
gravity position in the x direction as a function of time with no k − ω
filtering (solid line) and with the filtering (dotted line).

pre-processing indicates its performance. We have applied this
approach to the k − ω filtering and to the destretching.

4.2.1. k − ω filtering

The k − ω filtering (see for example Title et al. 1987) acts both
spatially and temporally. In practice, it is a thresholding in the
Fourier space. The contributions of all frequencies correspond-
ing to a phase velocity higher than the threshold are eliminated.

Let us note that the data we use are irregularly sampled. The
time step between two pairs of images is about 21 s, within a
few seconds (the maximum deviation with respect to a periodic
sampling is 15 s, while the average deviation is 6.3 s). The same
data set has been used by Dorotovič et al. (2002), who interpo-
lated them to get a regularly spaced time series. We consider that
this is an unnecessary refinement since, within a few seconds, the
solar signal does not change. Hence, with a regular time step, im-
ages would differ from ours by just a different realisation of the
Earth’s atmospheric turbulence.

Figure 5 shows the average pixel error on the x-position of
the granules for data pre-processed with a k−ω filtering and data
without pre-processing. We used a threshold for the phase veloc-
ity of 4 km s−1. The figure shows that the performance is quite
improved over the whole time series by the use of this filtering.
The error for the y-component is within an order of magnitude
of the error for the x-component.

One may wonder why the increasing distortion seen after
t = 45 min in Fig. 2 does not appear in Fig. 5. This comes
from the way the error is measured. Indeed, only granules close
enough in a given pair of images are kept. The distortion map
in Fig. 6 shows the lack of measurements in some regions: im-
age quality is not good enough for granules to be identified from
one frame to the other. With this method it is clear that high-
amplitude distortion does not show up with increased error in
granule position, but instead appears in a reduction of the num-
ber of “valid granules”. In Fig. 7 we see the loss of granules
when conditions deteriorate and how k − ω filtering improves
the situation. Numbers in Table 1 also illustrate this process. The
errors only slightly increase from the “good” to the “bad” data,
but the number of granules, and in other words the number of
measuring points, is reduced by 20% without filtering, while the
loss is 10% with filtering.
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Fig. 6. An example of a map of displacements due to the Earth’s atmo-
spheric distortion as sampled by granules. Regions without data have
too low an image quality for a granule to be identified. X and Y are in
arcsec.

Fig. 7. Comparison of the number of granules for each image for raw
data (dotted line) and for k −ω filtered data (solid line). The number of
granules is defined as the number common to both images taken “simul-
taneously”. We note that filtering attenuates the fluctuations and when
atmospheric distortion increases, filtering reduces the losses of gran-
ules.

4.2.2. Destretching

This method, introduced by November & Simon (1988), is based
on the same principles as the LCT. It uses a local correlation
scheme to determine the displacements with respect to a ref-
erence image. From these displacements, images are stretched
by interpolation in order to be the closest possible to the refer-
ence image. This method aims at correcting the effects of atmo-
spheric turbulence and allows us to compare images that are then
plagued with the same distortion.

The pre-processing we used applies 4 successive correc-
tions based on local correlation tracking with the following

Table 1. Comparison of the performances obtained on time series with
high and low quality images with and without k − ω filtering.

Good data
σx σy Ng

No processing 0.696 ± 0.081 0.701 ± 0.084 1077 ± 91
k − ω 0.416 ± 0.037 0.418 ± 0.028 1096 ± 34

Bad data
σx σy Ng

No processing 0.694 ± 0.075 0.727 ± 0.079 803 ± 150
k − ω 0.470 ± 0.039 0.527 ± 0.045 972 ± 89

Fig. 8. Same as Fig. 5 but for destretching; the solid line is for unpro-
cessed data, while dotted lines show the error (σx) with the destretched
sequence.

parameters: an FWHM of 31 pixels with a 62 pixel step, an
FWHM of 62 pixels and a 31-pixel step, a 32 FWHM and a 16-
pixel step, and then an FWHM of 20 pixels and a 10-pixel step.
This combination has been established empirically and seems
to give the best results. We remind that 62 pixels correspond to
7.75′′ and 10 pixels to 1.25′′.

Figure 8 compares the error estimate on the granule posi-
tions in the x-direction between the destretched and raw time
series. Note that when image quality is good (t ≤ 45 min) errors
remain of the same order of magnitude as in raw data but fluc-
tuations are less important, while when image quality decreases
(t > 45 min), errors increase. Quite clearly the destretched series
does not compare favourably with the raw one. On the contrary,
destretching seems to worsen the results when the image quality
is slightly degraded.

Actually, the poor performance of destretching on error re-
duction could be anticipated from the result displayed in Fig. 9.
There we plot the mean distance between the granules in two
simultaneous plates when one plate has been destretched to
the other. If destretching were perfect, the error would vanish.
Clearly, this is not the case: in the sequence with “intense” at-
mospheric turbulence the error is not reduced at all, while dur-
ing the good sequence, a small factor 1.5 is gained. Therefore
we interpret the error increase generated by destretching as ev-
idence that the destretching process decorrelates from the true
displacement of granules and thus introduces a new random vari-
able whose dispersion adds to the original signal as shown by
the factor

√
2 taken by the error. This decorrelation may proba-

bly come from a change in scale of the distortion motions that
is no longer matched by the destretching process optimized for
the first frames of the sequence. If this interpretation is correct,
the destretching process would need a readjustment of the local
correlation tracking parameters from time to time, making the
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Fig. 9. Efficiency of destretching: the dotted line shows the difference
between two simultaneous images when one has been destretched with
the other as reference.

Table 2. Rms fluctuations of the position of granules on a typical pair of
images shown for different resolutions with the multi-resolution analy-
sis and with and without k − ω filtering. σs are given in image pixel.
The 1.′′25 resolution corresponds to unfiltered data.

Resolution σx σx(k − ω)
1.′′25 0.72 0.42
2.′′50 0.37 0.18
5.′′00 0.28 0.11
10.′′0 0.20 0.08

whole processing very costly computationally. The only good
point introduced by destretching is the reduction of the fluctua-
tions.

4.2.3. Distortion noise on different scales

We have shown in Paper I that multi-resolution analysis was an
interesting tool for the determination of flow structures. We may
thus wonder how the distortion noise affects the different scales
and therefore resists to wavelet filtering. Using maps such as the
one in Fig. 6 we compute the different components of a multi-
resolution decomposition as will be used in the analysis of the
velocity field. Quantitatively we show in Table 2 the values of the
distortion amplitude on different scales. This table again shows
the importance of k −ω filtering in the reduction of errors, espe-
cially on large scales.

4.2.4. Conclusion

To conclude this section, two points should be underlined. On
the one hand, destretching is certainly an unnecessary compli-
cation whose only positive effect is to reduce the noise fluctua-
tions when correctly tuned to the distortion scales; otherwise, it
is likely to double the variance of the signal. On the other hand,
k − ω filtering appears as the required pre-processing whose ef-
fect on noise reduction is clear. We surmise that, when using
time-sequences with a higher time-sampling, the noise reduction
by k − ω filtering will be even more efficient.

5. Propagation of errors from granule positions
to the velocities

After examining the estimation of errors on the granule position
in the previous section, we now study the propagation of these

errors to the velocity of the granules, after averaging in time and
over a given spatial range.

5.1. Error propagation

As seen above, the first step of the velocity computation in the
CST algorithm is to determine of the position of granules on
each image. The duration of the tracking of the kth granule is
given by ∆tk = tnf (k) − tni(k), where ni(k) is the image where the
granule k appears and nf(k) the image where it disappears.

Over an image, granules are much less dense than pixels,
making the velocity field sampled on a much coarser grid whose
elements have size δ. The velocity at a grid coordinate (x, y) is
assumed to be the average of the velocity of granules whose av-
erage coordinates belong to the domain D around (x, y) (i.e. in
[x − δ/2, x + δ/2], [y − δ/2, y + δ/2] ). The spatial resolution of
the velocity field is given by the mesh size δ. The x-component
of the average velocity in D is given by

Vxp =
1
N

∑
k∈D

Vxk =
1
N

∑
k∈D

xk,nf (k) − xk,ni(k)

∆tk

where N is the number of trajectories falling in D. The uncer-
tainty on the value of Vxp is then

σ2
Vxp
=

1
N2

∑
k∈D

σ2
k,ni
+ σ2

k,nf

∆t2
k

·

If we assume that the dispersion on the centre of gravity remains
the same for the whole time series (σx) and that the time interval
∆tk is the same for all granules (i.e. all granules have the same
lifetime ∆t), then the expression of the dispersion of the average
velocity in x is

σ2
Vxp
=

1
N2

∑
i∈D

2σ2
x

∆t2
=

2σ2
x

N∆t2
·

In this case, the error on the velocity varies like

δV =

√
2σx√
N∆t
· (1)

We see that precise velocity values need many granules in a grid
element and a long time interval. In other words, errors are less if
a coarse resolution in space and time is used. A trade offmust be
found (see below), but it is clear that this technique will be more
appropriate to slowly evolving large-scale flows than to rapidly
varying small-scale ones.

5.2. Influence of the granule lifetime

However, all granules do not have the same lifetime (see for ex-
ample Hirzberger et al. 1999 or Paper I). In this case, it may be
more appropriate to select only a subsample of the granules. For
example, in the simple case where half of the N granules have a
lifetime ∆at and the other half a lifetime ∆bt = 2∆at, the error
on the velocity is

σ2
a+b =

1
N2

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
i∈D,∆ti=∆at

2σ2
x

∆a2
t

+
∑

i∈D,∆ti=∆bt

2σ2
x

∆b2
t

⎞⎟⎟⎟⎟⎟⎟⎠
=

1
N2

(
Nσ2

x

∆a2
t

+
Nσ2

x

4∆a2
t

)
=

5σ2
x

4N∆a2
t

·
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Fig. 10. Error on the x-component of the velocity as a function of the
threshold on the granule lifetime. The different lines are for different
resolutions of the multi-resolution decomposition; the solid line shows
the raw case (no wavelet filtering). The optimal threshold clearly ap-
pears around 3 min.

If we take only the N
2 granules with the largest lifetime ∆bt into

account, we obtain

σ2
b =

22

N2

∑
i∈D,∆ti=∆bt

2σ2
x

∆b2
t

=
4

N2

Nσ2
x

4∆a2
t

=
σ2

x

N∆a2
t

≤ σ2
a+b.

Therefore, the errors are smaller when considering only the gran-
ules with the longest lifetime.

This result shows that some selection of “valid granules”
may improve the quality of the velocity field. We thus impose
a lower threshold on the granule lifetime to eliminate short-lived
structures. This threshold has to be determined empirically and
depends on the filling factor of the grid. (We need to avoid grid
points with no data, see Paper I.) This strategy may be improved
by computing the average velocity for various thresholds, start-
ing with the highest one. Since granules with long lifetimes are
rare the number N is small and the error is large. By reducing
the threshold, the number of granules increases rapidly and the
error decreases. For some optimal threshold, the error ceases to
decrease as the increase in granule number no longer compen-
sates for the diminishing value of ∆t (see Eq. (1)). This process
is illustrated in Fig. 10 where we show the dispersion of velocity
differences between the two independent data sets as a function
of the threshold on the granule lifetime. Clearly, for these data
the optimal threshold is around 3 min.

5.3. Influence of the granule size

It is also interesting to study the influence of the granule size
on the error for the granule centre of gravity. We would expect a
smaller error in the case of large granules, as these are defined by
a larger number of pixels. A selection on the granule size could
then also improve the precision on the velocity field. Figure 11
shows an estimation of the error on the granule position for var-
ious granule size intervals. The precision increases only slightly

Fig. 11. Average distance between the granule centre of gravity for a
pair of images as a function of the granule size.

with the granule size, and the improvement is at most 0.05 pix-
els. This means that the error on the velocity will not change
much either. This small improvement in the error is too weak to
compensate for the increase in the error on the velocity due to
the decrease in the number of granules as their size increases.

6. Error propagation to the final maps

Following the algorithm described in Paper I (but see also
Sect. 5.1), we now compute the velocity fields of the two in-
dependent time series at a different resolution (see Paper I). A
comparison between the two fields shows the influence of the
distortion induced by the Earth’s atmosphere and the efficiency
of MRA in revealing the flow patterns on the different scales.
The results are illustrated by Figs. 12 and 13, which show the
horizontal divergences and the vertical component of vorticity,
respectively. This flow field is the average velocity over a time
lapse of ∆t = 87 min including the preceding sequence and
with no distinction between the “bad” and “good” sequences.
Actually, we first computed the velocity fields using the “good”
sequence and then extended the computation to the whole set.
We observed that the dispersion between the two independent
sequences was still reduced when using the whole set of data
showing that, for the determination of the large-scale mean flow,
the observed degradation in the distortion is not influential.

In Table 3, we quantitatively summarise the dispersion of the
results as a function of the resolution for unfiltered images. This
table has been obtained with the whole time series (87 min), us-
ing a velocity pixel of 1.25′′ and removing all granules with a
lifetime less than 180 s. We computed the rms velocities, diver-
gences and curls, of the maps issued from the multi-resolution
decomposition. The “uncertainties” shown along the numbers
give the amplitude of the fluctuations generated by the Earth’s
atmospheric distortion. This table shows the decreasing influ-
ence of distortion with increasing scale. It also shows that, as
expected, velocity gradients (divergence and the z-component of
the vorticity) suffer much more from the noise and that the curl
is certainly the quantity most sensitive to image quality. The val-
ues of the correlations between the results issued from the two
independent series (Cv, Cd and Cc) quantitatively indicate the
similarity of the fields. Here too, filtered fields are much better
correlated, up to 90% on the velocity field. As shown below, this
correlation is still improved when using k − ω filtered data.

In this table, we also give a “turbulent velocity”, which is the
mean rms dispersion of granule velocities. Indeed, in each ve-
locity pixel we take the mean velocity of the granules falling in
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Fig. 12. Two views of the divergence field at different resolution. The
difference between the left and right flow fields is the noise introduced
by the Earth’s atmosphere. In the first row no filtering has been applied
and common features are barely identifiable. The following rows show
filtered data according to multi-resolution representation (see Paper I)
with a resolution divided by 2 from one row to the next. The mesh size
is 10 pixels (1.′′25) and the flow is an average over ∼1.5 h. X and Y are
in arcsec.

this very pixel; however, while computing this mean velocity, we
also have access to the dispersion around this mean. This mean
(over the whole field of view) dispersion represents the random
motion of granules around their drift by large-scale flows. This
table shows that, although this quantity suffers (also) from image
quality, it is almost independent of scale. This independence is
expected since this quantity measures the proper motion of gran-
ules and therefore their intrinsic kinetic energy, which should not
vary from place to place.

Fig. 13. Same as in Fig. 12 but for the z-component of the curl field.

Table 4 gives the same quantities but for the k − ω filtered
sequence. We note the strong reduction of the noise, almost a
factor 2, on all scales and the strong improvement of correlation
between the results of the two independent series. Moreover, the
dispersion of the velocities is reduced in the same proportion as
displacement of granules (i.e. 330 m/s

695 m/s ∼ 0.4 pix.
0.7 pix. ). The comparison

of the values of turbulence in Tables 3 and 4 shows the influ-
ence of the Earth’s atmospheric noise on the random motion of
granules.

Table 5 gives another view of this velocity field using a
smaller mesh size. Here we computed the velocity amplitudes
that are traced by granules when they can be considered as pas-
sive scalars, i.e. on a scale larger than 2500 km. Numbers show
that on that scale the velocity field has an amplitude of 400 m/s
and that such a measurement is still uncertain by 30%. This is
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Table 3. Rms velocities, divergences and curls, of the maps issued from the multi-resolution analysis of the whole time series. The first row is
raw data (no wavelet filtering) while the next rows shows the numbers issued from the wavelet-filtered maps. Velocities and turbulence are in m/s,
divergence and curl in 10−4 s−1.

Resolution (pixel size) Vrms Cv (Div V)rms Cd (Curl V)rms Cc Turbulence
1.25′′ 920 km 700 ± 695 0.49 7.1 ± 7.0 0.45 5.7 ± 7.0 0.22 880 ± 224
2.50′′ 1840 478 ± 342 0.74 3.8 ± 2.8 0.69 2.9 ± 3.0 0.45 893 ± 122
5.00′′ 3680 340 ± 172 0.87 1.6 ± 0.9 0.89 1.2 ± 0.9 0.73 890 ± 94
10.0′′ 7360 205 ± 92 0.90 0.58 ± 0.24 0.94 0.41 ± 0.24 0.85 896 ± 65

Table 4. Same as Table 3 but for k − ω filtered data. Note the reduction in the dispersion of the results.

Resolution (pixel size) Vrms Cv (Div V)rms Cd (Curl V)rms Cc Turbulence
1.25′′ 920 km 597 ± 330 0.85 6.8 ± 4.2 0.81 5.0 ± 4.2 0.66 680 ± 193
2.50′′ 1840 466 ± 162 0.94 4.0 ± 1.7 0.91 2.7 ± 1.7 0.81 692 ± 105
5.00′′ 3680 350 ± 80 0.97 1.8 ± 0.4 0.97 1.2 ± 0.4 0.95 689 ± 78
10.0′′ 7360 209 ± 40 0.98 0.63 ± 0.1 0.98 0.42 ± 0.1 0.96 694 ± 53

Table 5. Same as Table 4 but for a smaller velocity pixel.

Resolution (pixel size) Vrms Cv (Div V)rms Cd (Curl V)rms Cc Turbulence
0.′′875 644 km 722 ± 534 0.73 11 ± 9.7 0.64 10 ± 9.7 0.54 528 ± 288
1.′′75 1288 528 ± 258 0.88 6.3 ± 3.7 0.83 4.5 ± 3.8 0.65 532 ± 143
3.′′50 2576 403 ± 128 0.95 2.7 ± 0.9 0.94 1.8 ± 0.9 0.87 533 ± 75
7′′ 5152 284 ± 65 0.97 1.2 ± 0.3 0.97 0.7 ± 0.3 0.94 533 ± 45

about the same for the divergence, but it rises to 50% for the vor-
ticity. The more intense fluctuations compared to Table 4 come
from the smaller scales involved. The weaker “Turbulence” val-
ues come from the empty bins which are more numerous.

These results show that, when independent images series are
available, the use of the CST algorithm authorizes a tight con-
trol on the role of the noise induced by the Earth’s atmospheric
distortion.

7. Conclusions

In this paper we have tried to show the various influences of the
noise generated by the Earth’s atmosphere when one measures
the horizontal velocity field at the surface of the sun through
granule tracking.

For this purpose we compared two time series of images of
the solar surface separated by at most a few seconds; they thus
represent the same solar signal but with a different noise (essen-
tially, distortion from the Earth’s atmosphere). We measured the
position of the granules in the two time series and used these data
to determine the amplitude of the noise. We could thus test the
pre-processing that could first be applied to the images, namely a
k−ω filtering and the destretching. The comparison between the
pre-processed series and the raw one allowed us to evaluate the
efficiency of the pre-processing. It turns out that k − ω filtering
significantly reduces the noise while destretching, even if reduc-
ing the fluctuations, not only cannot reduce it, but amplifies it
when distortion increases.

We also found that the CST algorithm that tracks coher-
ent structures (essentially granules) could easily go across se-
quences of images with decreased image quality. This is because
all granules are not affected evenly by distortion and granules
whose trajectories are too perturbed by atmospheric noise are
eliminated; they thus do not input noise in the final velocity field.
This is clearly a feature that algorithms based on local correla-
tions of images cannot authorize.

We also studied how the distortion noise affecting granules
positions introduces some noise into the interpolated velocity

fields. We thus showed that the lifetime of granules was an im-
portant parameter and that short-lived granules should be elim-
inated. The trade-off between granule number (the more nu-
merous the granules, the better sampled the velocity field) and
noise intensity seems to be, for our sequence, around 3 min. It is
clear that, if the atmospheric noise is more intense, this thresh-
old should be increased. With the decomposition of the velocity
on the Daubechies wavelets (see Paper I), we could evaluate the
impact of the noise on different scales and show that errors on
velocities decrease with increasing scale, as expected. More pre-
cisely, we could show that on a scale of 2500 km, i.e. on the scale
where granule motions trace the large-scale flows (Rieutord et al.
2001), the typical velocities, around 400 m/s, are still noised at
a 30% level. Nevertheless, one can recognize, on the wavelet-
filtered maps, common patterns between the two time series, all
the more easily when the scale is large.

The next steps are now obvious: with new cameras with fast
reading sensors (like CMOS), it is easy to increase the time sam-
pling by a factor 10. In this case the k − ω filtering will be
much more efficient at reducing the noise on the granule motion.
Hence, with an increased time-sampling we expect to reduce the
noise in two ways: first, by an improved efficiency of the k − ω
filter and second by a factor

√
N from the N images sharing the

same solar signal.
The tools developed here seem to perform quite efficiently

on the numerical side and therefore allow for the treatment of
much larger fields of view.

Finally, we did not discuss the results in terms of solar tur-
bulence. Let us mention that numbers, like the amplitude of ve-
locity on a 2.5 Mm scale, agree with previous determinations
(e.g. Brandt et al. 1991). However, it is clear that (solar) fluid
mechanics should be discussed, such as the scale dependence of
flow features. This is beyond the scope of this paper but will be
the subject of forthcoming work.
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