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Part I

Non-LTE radiative transfer in 1D
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1D radiative transfer

1
Case of a two-level atom

Contents

1.1 Semi-infinite atmosphere . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Solar filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Solar prominence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

We aim to solve 1D non-LTE radiative transfer equation (RTE) for a two-level atom in the
case of a solar : semi-infinite atmosphere, filament and prominence. In paragraph 1.1 (semi-
infinite atmosphere), we discretize transfer equation in order to write it in a matrix form.
Λ-iteration method as well as Accelerated Lambda Iteration (ALI) method are explained and
applied to solve transfer equation in the case of a semi-infinite atmosphere. In paragraph
1.2 (filament), we apply ALI method to solve transfer equation for a filament and for a
realistic atom (hydrogen, Lyman Alpha line Lα). In paragraph 1.3, ALI method is applied to
a prominence under the same conditions as a filament.

1.1 Semi-infinite atmosphere

The semi-infinite atmosphere considered here concerns the photosphere and the chromosphere.
It is represented by a layer of thickness τ, divided in Nd sublayers. Thickness of each atmo-
sphere sublayer τd (d = 1, ..., Nd) is in cm. The layers are spherical but they are considered
as plane-parallel slabs. In the case of a two-level atom (a fundamental and a line), there is
only one line and therefore only one grid of reduced frequencies xi, i = 1, ..., Nfreq. Complete
frequency redistribution (CRD) is used here. We consider Voigt profile for line. Here, B = 1
(Planck function), ε = 10−4 (extinction coefficient or probability of collisional destruction of
photons). The boundary conditions (BC) are :
- BC (top) : 0 (there is no incident intensity),
- BC (bottom) : B = 1 in the whole layer.

We consider 2 grids :
- a grid of optical depths τ = (τd), d = 1, ..., Nd,
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CASE OF A TWO-LEVEL ATOM

- a reduced frequency grid

(
xi = νi − ν0

∆νD

)
, i = 1, ..., Nfreq. νi is the line frequency, ν0 is the

line center frequency and ∆νD = λ

c

(2kT

m

)1/2
is the Doppler width. λ is the line wavelength,

c is the velocity of light, k is the Boltzmann constant, T is the atmospheric temperature and
m is the mass of the considered atom.

1.1.1 Semi-infinite atmosphere modeling

Figure 1.1 illustrates this modeling. τ is ranged by increasing value (dimensionless number).

τ3
τ2

τ1

τ4

τ

τNd

PHOTOSPHERE

SUN

BC(top)=0

BC(bottom) : B=1

Figure 1.1: Solar semi-infinite atmosphere model (figure is not to scale).

In the next sections, we solve numerically radiative transfer equation (RTE) for a semi-infinite
atmosphere. We present two methods : Λ-iteration method (convergence of the solution is
slow) and ALI method (Accelerated Lambda Iteration) based on the previous method (we
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1.1. SEMI-INFINITE ATMOSPHERE

accelerate Λ-iteration method). We first discretize radiative transfer equation in order to
write it in matrix form.

1.1.2 Discretization of radiative transfer equation and boundary con-
ditions

The radiative transfer equation is ((2.22) from Jefferies (1968)) :

µ
dIµν

dτν

= Iµν − S, (1.1.1)

where Iµν ≡ I(µ, ν, τ) is the specific intensity, µ = cos θ, θ is the angle between the light ray
and the normal to the solar surface (µ > 0). ν is the frequency, τ is the generic optical depth
(in center of the line), τν is the optical depth at a given frequency ν, S is the source function.
In CRD, S depends only on τ.
The source function for a two-level atom is :

S(τ) = (1 − ε) J(τ) + ε B(τ), (1.1.2)

where B is the Planck function, ε is the extinction coefficient (or probability of collisional
destruction of photons).

J(τ) =
∫ +∞

0
Jν φν dν, (1.1.3)

where φν is the line profile (Voigt profile).
The mean intensity (on directions) is :

Jν(τ) = 1
4π

∮
Iµν dΩ =

∫ 1

−1
Iµν dµ (1.1.4)

Remark 1.1.1 J, Jν, S and Iµν have same unit.

τν and τ are linked by the following formula :

τν = φν τ (1.1.5)

Remark 1.1.2 By applying the change of variable τν by τ (1.1.5), the RTE (1.1.1) is (for-
mula 3 from Olson et al. (1986)) :

µ
dIµν

dτ
= φν [Iµν − S] (1.1.6)

Equation (1.1.1) can be written as :

µ2 d2u
dτ2

ν

= u − S, (1.1.7)
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CASE OF A TWO-LEVEL ATOM

where u = 1
2(Iµν + I−µν).

Proof of (1.1.7):

Let’s consider :

u = 1
2(Iµν + I−µν) (1.1.8)

and

v = 1
2(Iµν − I−µν) (1.1.9)

According to (1.1.1) :

µ
dIµν

dτν

= Iµν − S,

so that

− µ
dI−µν

dτν

= I−µν − S (1.1.10)

Summing equations (1.1.1) and (1.1.10), we obtain :

µ
dv

dτν

= u − S (1.1.11)

Subtracting (1.1.1) from (1.1.10), we obtain :

µ
du

dτν

= v. (1.1.12)

Therefore
dv

dτν

= µ
d2u
dτ2

ν

. Subtituting (1.1.12) into (1.1.11), we obtain (1.1.7). �

We discretize equation (1.1.7) : µ2 d2u
dτ2

ν

= u − S

∀ν, ∀µ, ∀d = 2, 3, ..., Nd−1 , let ∆τν,d = (τd+1 − τd) φν := τν,d+1 − τν,d.

The following discretization scheme is considered :
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1.1. SEMI-INFINITE ATMOSPHERE

d−1
d d+1

d+1/2

d

d−1/2

z

Figure 1.2: Discretization scheme of equation (1.1.7).

The derivative of u with respect to τν at point d − 1/2 is :

[
du

dτν

]

d−1/2
= ud − ud−1

(τd − τd−1)φν

= ud − ud−1
∆τν,d−1

Similarly, the derivative of u with respect to τν at point d + 1/2 is :

[
du

dτν

]

d+1/2
= ud+1 − ud

∆τν,d

And the second derivative of u with respect to τν at point d is :

[
d2u
dτ2

ν

]

d

=
[

du
dτν

]
d+1/2

−
[

du
dτν

]
d−1/2

(τd+1/2 − τd−1/2)φν

Let

(τd+1/2 − τd−1/2)φν = 1
2(τd+1 − τd−1)φν

= 1
2(τd+1 − τd + τd − τd−1)φν

= 1
2(∆τν,d + ∆τν,d−1)

Hence
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CASE OF A TWO-LEVEL ATOM

[
d2u

dτ2
ν

]
d

= 2
ud+1−ud∆τν,d

−
ud−ud−1∆τν,d−1

∆τν,d+∆τν,d−1

= 2 ud+1
∆τν,d(∆τν,d + ∆τν,d−1) −

2 ud

∆τν,d(∆τν,d + ∆τν,d−1)

−
2 ud

∆τν,d−1(∆τν,d + ∆τν,d−1) + 2 ud−1
∆τν,d−1(∆τν,d + ∆τν,d−1)

= 2 ud−1
∆τν,d−1(∆τν,d + ∆τν,d−1) + 2 ud+1

∆τν,d(∆τν,d + ∆τν,d−1)

− 2 ud

( 1
∆τν,d(∆τν,d + ∆τν,d−1) + 1

∆τν,d−1(∆τν,d + ∆τν,d−1)
)

.

Let

1
∆τν,d(∆τν,d + ∆τν,d−1) + 1

∆τν,d−1(∆τν,d + ∆τν,d−1) = 1
∆τν,d ∆τν,d−1

Then,[
d2u
dτ2

ν

]

d

= 2 ud−1
∆τν,d−1(∆τν,d + ∆τν,d−1)−

2 ud

∆τν,d ∆τν,d−1
+ 2 ud+1

∆τν,d(∆τν,d + ∆τν,d−1)
The discretization of RTE (1.1.7) leads to :

2 µ2 ud−1
∆τν,d−1(∆τν,d + ∆τν,d−1)−

2 µ2 ud

∆τν,d ∆τν,d−1
+ 2 µ2 ud+1

∆τν,d(∆τν,d + ∆τν,d−1) = ud−Sd,

∀ν, ∀µ, ∀d = 2, ..., Nd−1

⇐Ñ Sd =
−2 µ2 ud−1

∆τν,d−1(∆τν,d + ∆τν,d−1)+
(

1 + 2 µ2

∆τν,d ∆τν,d−1

)
ud−

2 µ2 ud+1
∆τν,d(∆τν,d + ∆τν,d−1)

⇐Ñ −Ad.ud−1 + Bd.ud − Cd.ud+1 = Sd ∀µ, ∀ν, ∀2 ≤ d ≤ Nd−1, d ∈ N,
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1.1. SEMI-INFINITE ATMOSPHERE

with

Ad = 2µ2

∆τν,d−1(∆τν,d + ∆τν,d−1) , Bd = 1+ 2µ2

∆τν,d ∆τν,d−1
, Cd = 2µ2

∆τν,d(∆τν,d + ∆τν,d−1),
and ∆τν,d = (τd+1 − τd) φν.

Here, Ad > 0, Bd > 0 and Cd > 0.(Appendix A from Rybicki and Hummer (1991)) �

We write the boundary conditions (BC) for d = 1 (coefficients B1 and C1) and
d = Nd (coefficients ANd

and BNd
) :

let ∆τν,1 = (τ2 − τ1)φν and ∆τν,Nd
= (τNd

− τNd−1)φν.

We consider

{

I−
ν (µ) = Isup = 0 (≡ I−µν), pour τν = 0, upper BC

I+
ν (µ) = Iinf = B = 1 (≡ Iµν), pour τν = τνmax

, lower BC

According to (1.1.8), we have :

2u = Iµν + I−µν ⇐Ñ Iµν = 2u − I−µν (1.1.13)

According to (1.1.9), we have :

I−µν = Iµν − 2v ⇐Ñ I−µν = 2u − I−µν − 2v ⇐Ñ I−µν = u − v. (1.1.14)

For τν = 0, equation (1.1.14) can be written as :

u(τν = 0, −µ, ν) − v(τν = 0, −µ, ν) = Isup (1.1.15)

(1.1.14) ⇐Ñ v = u − I−µν, then (1.1.12) ⇐Ñ µ
du

dτν

= u − I−µν.

For τν = 0, we have :

u(τν = 0, −µ, ν) − µ
du

dτν

(τν = 0, −µ, ν) = Isup (1.1.16)

We discretize equation (1.1.16) :
[

du

dτν

(τν = 0, −µ, ν)
]

d=1
= u2 − u1

(τ2 − τ1)φν

= u2 − u1
∆τν,1

.

Then, equation (1.1.16) can be written as :

u1 − µ
u2 − u1
∆τν,1

= Isup ⇐Ñ u1

(

1 + µ

∆τν,1

)

− µ
u2

∆τν,1
= Isup,
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CASE OF A TWO-LEVEL ATOM

with

B1 = 1 + µ

∆τν,1
, C1 = µ

∆τν,1
and S1 = Isup.

�

As (1.1.13) ⇐Ñ Iµν = 2u − I−µν and (1.1.14) ⇐Ñ I−µν = u − v, then

(1.1.13) ⇐Ñ Iµν = u + v ⇐Ñ v = Iµν − u.

Hence (1.1.12) ⇐Ñ µ
du

dτν

= Iµν − u ⇐Ñ Iµν = u + µ
du

dτν

For τν = τνmax
, we have :

u(τν = τνmax
, µ, ν) + µ

du

dτν

(τν = τνmax
, µ, ν) = I(τν = τνmax

, µ, ν) = Iinf (µ) (1.1.17)

We discretize equation (1.1.17) :
[

du

dτν

(τν = τνmax
, µ, ν)

]

d=Nd

= uNd
− uNd−1

(τNd
− τNd−1)φν

= uNd
− uNd−1

∆τν,Nd−1
Then discretized equation (1.1.17) can be written as :

uNd
+ µ

uNd
− uNd−1

∆τν,Nd−1
= Iinf

⇐Ñ
−µ

∆τν,Nd−1
uNd−1 +

(
1 + µ

∆τν,Nd−1

)
uNd

= Iinf ,

with

BNd
= 1 + µ

∆τν,Nd−1
, ANd

= µ

∆τν,Nd−1
and SNd

= Iinf .

�

In summary, solving RTE (1.1.1)-(1.1.7) is equivalent to solving the following linear system :

T.u = S, (1.1.18)

where T is a tridiagonal matrix of size Nd × Nd whose terms are :

T =











B1 −C1
−A2

. . . . . .

. . . . . . −CNd−1
−ANd

BNd











(1.1.19)

with
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1.1. SEMI-INFINITE ATMOSPHERE

• ∀µ, ∀ν, ∀2 ≤ d ≤ Nd − 1, we have :

−Ad ud−1 + Bd ud − Cd ud+1 = Sd,

Ad = 2µ2

∆τν,d−1(∆τν,d + ∆τν,d−1) , Bd = 1 + 2µ2

∆τν,d ∆τν,d−1
,

Cd = 2µ2

∆τν,d(∆τν,d + ∆τν,d−1)

• B1 = 1 + µ

∆τν,1
, C1 = µ

∆τν,1

• ANd
= µ

∆τν,Nd−1
, BNd

= 1 + µ

∆τν,Nd−1

The second member S is :

S =















Isup

S2
...

SNd−1
Iinf















(1.1.20)

In the case of a semi-infinite atmosphère, Iinf = B and Isup = 0.

In the following sections, we introduce two methods to solve system (1.1.18) : Λ-iteration
method and ALI (Accelerated Lambda iteration) method.

1.1.3 Λ-iteration method

∀µ, ∀ν, we solve linear system (1.1.18) by Gaussian elimination (formulas A4 and A5 of
appendix A from Rybicki and Hummer (1991)) :

the following quantities are introduced : ∀µ, ∀ν,

Dd = (Bd − Ad Dd−1)−1 Cd, ∀2 ≤ d ≤ Nd − 1
D1 = B−1

1 C1
Zd = (Bd − Ad Dd−1)−1(Sd + Ad Zd−1), ∀2 ≤ d ≤ Nd

Z1 = B−1
1 S1

(1.1.21)

The following Gaussian elimination scheme is considered :
{

ud = Dd ud+1 + Zd, ∀1 ≤ d ≤ Nd

uNd+1 = 0 (1.1.22)
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CASE OF A TWO-LEVEL ATOM

The Λ-iteration algorithm for solving RTE (1.1.1) or (1.1.7) is :

1. We initialize source function S to a starting value, for example to Planck function B = 1

2. For each frequency ν and direction µ :

• we compute coefficients of the tridiagonal matrix T for each optical depth τν

• we compute solution u by Gaussian elimination (1.1.22)

• we compute Jν(τ) =
∫ 1

−1
Iµν dµ = 2

∫ 1

0
u dµ =

Nµ
∑

i=1
ui.αi, where (αi)i are the

standard integration weights relative to direction µ

• we compute J(τ) =
∫ ∞

0
Jν φν dν =

Nfreq
∑

j=1
Jν(j).W (j), where W is the integration

weight in frequency and must be proportional to φν and normalized

3. S1 = Isup (BC)

4. SNd
= Iinf (BC)

5. S(τ) = (1 − ε)J(τ) + εB

We repeat steps 2 to 5 several times (Niter) for convergence.

For Niter = 200, Λ-iteration method still does not converge to the exact solution (we obtain
the same result as Paletou (2001), Figure 1) which starts from S(τ = 0) = B

√
ε (formula

(65) from Hummer and Rybicki (1967)).

Figure 1.3 represents source function S as a function of optical depth τ for a Doppler profile
(

φν = e−x2
, x = ν − ν0

∆νD

)

, B = 1, ε = 10−4.
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1.1. SEMI-INFINITE ATMOSPHERE
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Figure 1.3: Source function as a function of optical depth (logarithmic scale), using Λ-iteration
method for a Doppler profile (case of a semi-infinite atmosphere). Here, B = 1, ε = 10−4.
After 200 iterations, the method still does not converge to the exact solution.

In the following section, we introduce ALI (Accelerated Lambda iteration) method which
converges faster to the exact solution.

1.1.4 ALI method (Accelerated Lambda Iteration)

We consider the following iterative scheme :

{ Λ = Λ∗ + (Λ − Λ∗)
Sn+1 = Sn + ∆S

(1.1.23)

where n is the iteration index for ALI convergence, Λ∗ is the exact diagonal of the full operator
Λ, and S is the source function. We will detail further ∆S.
By definition,

J = Λ S, (1.1.24)

with

Λ =
∑

ν

∑

µ

Λµν.γµν (1.1.25)

The full operator Λ is also called the “big Lambda operator”. The operator Λµν is called the
“small Lambda operator”, is given by (1.1.18) and is defined by (formula (1.1) from Rybicki
and Hummer (1991)) :

Iµν = Λµν [S] (1.1.26)
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CASE OF A TWO-LEVEL ATOM

Proof of (1.1.25) :

J =
∑

ν

Jν.αν, αν integration weights in frequency

=
∑

ν

∑

µ

Iµν.αν.βµ, βµ integration weights relative to the direction

= [
∑

ν

∑

µ

Λµν.γµν] S

�

We don’t compute Λ, we rather compute Λ∗ =
∑

µ,ν

Λ∗
µ,ν .δµ,ν, where δµ,ν is the integration

weights relative to frequencies ν and to directions µ. Λ∗
µ,ν is a diagonal matrix containing

diagonal elements of the matrix T−1 (and not T) according to (1.1.18).

Remark 1.1.3 Λµν, Λ∗
µν, Λ∗ and Λ matrices have same size Nd × Nd.

ALI iterative scheme is :

Sn+1
k = Sn

k + ∆Sk, avec

∆Sk = (1 − ε)Jn

k + εBk − Sn
k

1 − (1 − ε)Λ∗
kk

(1.1.27)

n is the index on iterations (ALI convergence) and k is the index on optical depth.

Proof of (1.1.27) :

We start from formula of the source function (1.1.2) :

S = (1 − ε)J + εB, where J = Λ [S].

We write the following iterative scheme (formula (9) from Olson et al. (1986)) :

∀k = 1, ..., Nd Sn+1
k = (1 − ε)Λ [Sn

k ] + ε Bk.

As Λ = Λ∗+(Λ−Λ∗), then according to the formula (10) from Olson et al. (1986), we obtain :

Sn+1
k = (1 − ε)Λ∗ [Sn+1

k ] + (1 − ε)(Λ − Λ∗)Sn
k + ε Bk (1.1.28)
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1.1. SEMI-INFINITE ATMOSPHERE

(1.1.28) ⇐Ñ Sn+1
k − (1 − ε)Λ∗ Sn+1

k = (1 − ε)(Λ − Λ∗)Sn
k + ε Bk

⇐Ñ [1 − (1 − ε)Λ∗]Sn+1
k = (1 − ε)(Λ − Λ∗)Sn

k + ε Bk

⇐Ñ Sn+1
k = [1 − (1 − ε)Λ∗]−1[(1 − ε)(Λ − Λ∗)Sn

k + ε Bk] (formula (11) from Olson et al. (1986))

⇐Ñ Sn+1
k = (1 − ε)(Λ − Λ∗)Sn

k + ε Bk

1 − (1 − ε)Λ∗

⇐Ñ Sn+1
k = (1 − ε)Λ Sn

k − (1 − ε)Λ∗ Sn
k + ε Bk

1 − (1 − ε)Λ∗

⇐Ñ Sn+1
k = (−(1 − ε)Λ∗ Sn

k + Sn
k ) − Sn

k + (1 − ε)Λ Sn
k + ε Bk

1 − (1 − ε)Λ∗

⇐Ñ Sn+1
k = [1 − (1 − ε)Λ∗]Sn

k − Sn
k + (1 − ε)Λ Sn

k + ε Bk

1 − (1 − ε)Λ∗

⇐Ñ Sn+1
k = Sn

k + (1 − ε)Λ Sn
k + ε Bk − Sn

k

1 − (1 − ε)Λ∗

⇐Ñ Sn+1
k = Sn

k + (1 − ε)Jn

k + ε Bk − Sn
k

1 − (1 − ε)Λ∗
kk

since J = Λ S

⇐Ñ Sn+1
k = Sn

k + ∆Sali
k

�

Computation of Λ∗
µν (diagonal matrix) :

Λ∗
µν =

















T−1
11 0 · · · · · · 0
0 . . .

...
... T−1

ii
...

. . . 0
0 · · · · · · 0 T−1

NdNd

















where T = Λµν defined by (1.1.19).
Let λ = T−1. We compute diagonal elements λii without inverting matrix T. According to
appendix B from Rybicki and Hummer (1991), we have : ∀ 2 ≤ i ≤ Nd − 1

λii = (1 − Di Ei+1)−1.(Bi − Ai Di−1)−1, (1.1.29)

with
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CASE OF A TWO-LEVEL ATOM















Di = (Bi − Ai Di−1)−1.Ci

D0 = 0
Ei = (Bi − Ci Ei+1)−1.Ai

ENd+1 = 0
(1.1.30)

Here,

λ11 = (1 − D1 E2)−1.(B1 − A1 D0)−1 = B−1
1 .(1 − D1 E2)−1

λNdNd
= (1 − DNd

ENd+1)−1.(BNd
− ANd

DNd−1)−1 = 1/(BNd
− ANd

.DNd−1) (1.1.31)

The algorithm by ALI method for solving RTE (1.1.1)-(1.1.7) is :

1. We initialize source function S to a starting value, for example to Planck function B = 1

2. For each frequency ν and for each direction µ, we compute the diagonal matrix Λ∗
µν(τ)

which is stored as a vector of size Nd. We use formulas (1.1.29-1.1.31) for λii

3. We compute Λ∗ =
∑

µ,ν

Λ∗
µν.δµν, where δµν is the integration weights in ν (which is

proportional to φν and normalized) and in µ

4. We loop on Niter = 200 iterations, to :

• compute J (and Jν) by Gaussian elimination using formula (1.1.22)

• compute S(τ) using formula (1.1.27) for each optical depth and having previously
initialized S1 = Isup and SNd

= Iinf

ALI method converges after 100 iterations to the exact solution. Figure 1.4 represents source
function S as a function of optical depth τ for a Doppler profile, B = 1, ε = 10−4. We have
the same results as figure 1 from Paletou (2001).
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Figure 1.4: Source function as a function of optical depth (logarithmic scale), using ALI
method for a Doppler profile (case of a semi-infinite atmosphere). Here, B = 1, ε = 10−4.
Convergence is reached after 100 iterations.

In next section, we accelerate ALI method.

1.1.5 Acceleration of ALI scheme by Ng method

The aim is to accelerate ALI scheme by Ng (1974) method. Ng method (Ng acceleration is a
linear combination of successive iterations of source function S) consists in accelerating every
three iterations of ALI convergence.

As we have seen before, ALI iterative scheme for the source function S is (see section 1.1.4) :

Sn+1
k = Sn

k + ∆Sk ≡ F (Sn
k ) (1.1.32)

n is the index on the convergence iterations of ALI scheme, k is the index of the optical depth
grid τ.
According to section 5 from Olson et al. (1986), we consider the following three-point scheme:
Let Yn = Sn

k (τ) be a vector on the grid of optical depths. We accelerate the calculation of
the source function S.
Equation (1.1.32) can be written as :

Yn+1 = F (Yn)

According to Olson et al. (1986), we suppose that the iterative scheme converges linearly and
we accelerate the convergence by adopting a linear combination of 3 successive iterations :

Y ∗ = (1 − a − b)Yn−1 + a Yn−2 + b Yn−3 (1.1.33)
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Then
F (Y ∗) = (1 − a − b)Yn + a Yn−1 + b Yn−2

= Yn+1 = F (Yn) (1.1.34)

a and b are such that
Nd

∑

i=1
[y∗

i − F (y∗
i )]2.Wi is minimal. Y ∗ = (y∗

i )1≤i≤Nd
and Wi is the weight

vector.

This is equivalent to solving the following system of linear equations :

{

a A1 + b B1 = C1
a A2 + b B2 = C2

(1.1.35)

The choice of Wi (weight) is important. We choose according to Olson et al. (1986) :

Wi = [Jn(τi)]−1

We can choose Wi = 1 but it converges a little slower (see figures 1.5 and 1.6).
The solution of system (1.1.35) is :

{

a = (C1 B2 − C2 B1) / (A1 B2 − A2 B1)
b = (C2 A1 − C1 A2) / (A1 B2 − A2 B1) (1.1.36)

with

A1 =
Nd

∑

i=1
(yn

i − 2yn−1
i + yn−2

i )2.Wi

B1 =
Nd

∑

i=1
(yn

i − yn−1
i − yn−2

i + yn−3
i ).Wi.(yn

i − 2yn−1
i + yn−2

i )
A2 = B1

B2 =
Nd

∑

i=1
(yn

i − yn−1
i − yn−2

i + yn−3
i )2.Wi

C1 =
Nd

∑

i=1
(yn

i − 2yn−1
i + yn−2

i ) (yn
i − yn−1

i ).Wi

C2 =
Nd

∑

i=1
(yn

i − yn−1
i − yn−2

i + yn−3
i ) (yn

i − yn−1
i ).Wi

(1.1.37)

Ng algorithm can be summarized in two steps :

• we start from an initial value of the source function S

• the accelerated vector Yn is computed after the first four iterations, then after each
three normal iterations of ALI scheme.
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1.1. SEMI-INFINITE ATMOSPHERE

Accelerated ALI algorithm is :

• Loop on Niter = 200 (iterations)

1. we compute J using Gaussian elimination (1.1.22)

2. we compute S using formula (1.1.32)

3. by using a counter, subroutine “acceleration”is called after 3 normal ALI iterations

• End loop

Subroutine “acceleration” takes as input : J, S, iter = n (current iteration). It computes
weight Wi = [J]−1; values A1, B1, B2, C1, C2, A2; values a and b. It computes Sn+1

k using
formula (1.1.34) :

Sn+1
k = (1 − a − b)Sn

k + aSn−1
k + bSn−2

k ≡ F (Sn
k )

Then, we put this result in S (input).

Accelerated ALI method converges to the exact solution after 20 iterations : figure 1.5 rep-
resents source function S as a function of optical depth τ (logarithmic scale) for a Doppler
profile, B = 1, ε = 10−4, using weight Wi = [Jn]−1 for acceleration. When we take Wi = 1,
accelerated ALI method converges to the exact solution after 30 iterations (see figure 1.6).
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Figure 1.5: Source function S as a function of optical depth on a logarithmic scale, by
accelerated ALI method for a Doppler profile (case of a semi-infinite atmosphere). Here,
B = 1, ε = 10−4, Wi = [Jn]−1. Convergence is reached after 20 iterations.
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Figure 1.6: Source function S as a function of optical depth on a logarithmic scale, by
accelerated ALI method for a Doppler profile (case of a semi-infinite atmosphere). Here,
B = 1, ε = 10−4, Wi = 1. Convergence is reached after 30 iterations.

1.1.6 Description of numerical code

Nature of the physical problem : NLTE radiative transfer (1D) in semi-infinite atmosphere for
a two-level atom (a fundamental and a fictitious line), without internal velocity field

Method of solution : improved Feautrier method (Rybicki and Hummer, 1991) combined
with :
- Λ-iteration method
- ALI (Accelerated Lambda Iteration) method
- acceleration of ALI scheme using Ng method

Other relevant information : we use complete frequency redistribution (CRD)

Authors : M. Chane-Yook & P. Gouttebroze

Program available from :
https://idoc.ias.u-psud.fr/MEDOC/Radiative transfer codes/Tools for radiative transfer

Computer(s) on which program hab been tested : PC with 4 Intel processors (2.67GHz)

Operating System(s) for which version of program has been tested : Linux

Programming language used : Fortran 90/95 (with gfortran compiler)

Status : stable
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1.1. SEMI-INFINITE ATMOSPHERE

Accessibility : open (MEDOC)

No. of code lines in combined program and test deck : 594

Typical running time : < 1 min for 20 iterations of accelerated ALI cycle

References :
- G. B. Rybicki & D. G. Hummer, “An accelerated lambda iteration method for multilevel
radiative transfer. I- Non-overlapping lines with background continuum”, A&A, 245, 171-181,
1991
- F. Paletou, “Transfert de rayonnement : méthodes itératives”, C. R. Acad. Sci. Paris, t.2,
Série IV, 885-898, 2001

In next section, we describe subroutines used in the program.

1.1.7 Description of subroutines

The main program “lambda_it.f90” calls 3 subroutines :

- grilles : implementation of frequency grids, of optical thicknesses grid, direction grid and
Voigt profile

- methode_lambda_it_simple(S,J_bar,J_nu) : Λ-iteration method

- methode_ali(S_ali,J_bar_ali,J_nu_ali) : ALI method + Ng acceleration

The main program “lambda_it.f90” uses several modules whose files are (see below for the
set of variables used) :

- param.f90 : contains global variables as well as constants defined as B, ε, niter, ...

- general.f90 : contains several subroutines like definition of grids, computation of tridiago-
nal matrix coefficients (1.1.19), computation of integration weights, Voigt function, Gaussian
elimination formulas (1.1.22), computation of Jν and J

- lambda_it_simple.f90 : deals with Λ-iteration method

- ali.f90 : contains several subroutines like ALI scheme, computation of diagonal elements of
diagonal matrix Λ∗

µν (1.1.29)-(1.1.31), computation of Λ∗, computation of source function S,
computation of J, formulas for Ng acceleration

1.1.7.1 Set of variables used in the program

⋆ Module param_mod (param.f90 file) :
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• pi : π value

• coeff_extinction=10−4 : ε value

• BB=1 : Planck function value

• niter=200 : number of iterations for convergence of accelerated ALI and Λ-
iteration schemes

• T : electron temperature

• I_sup=0, I_inf=1 : upper and lower boundary conditions

• a_voigt=10−3 : parameter a for Voigt function. When a = 10−3, we have Doppler
function

• nfr=15 : size of grid of reduced frequencies XFR

• nxmod=101 : size of optical thickness grid xmod

• nmu=4 : size of direction grid µ = cos θ

• xmod : array of size nxmod corresponding to the generic optical depth τ = (τd)

• xfr : array of size nfr corresponding to reduced frequency xi

• mu : array of size nmu corresponding to values of µ = cos θ (direction)

• J_bar_ali,J_bar : arrays of size nxmod corresponding to J , respectively for Λ-
iteration method and for ALI method

• J_nu_ali,J_nu : arrays of size (nfr,nxmod) corresponding to Jν, respectively for
Λ-iteration method and for ALI method

• S_ali,S : arrays of size (nxmod,niter) corresponding to source function S, respec-
tively for Λ-iteration method and for ALI method

• u_ali,u : arrays of size (nxmod,nfr,nmu) corresponding to solution of RTE, re-
spectively for Λ-iteration method and for ALI method
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• lambda_etoile : array of size nxmod corresponding to matrix Λ∗

• lambda_etoile_mu_nu : array of size (nxmod,nfr,nmu) corresponding to matrix
Λ∗

µν

• tau_nu : array of size (nxmod,nfr) corresponding to the optical depth τν = φν τ

• phi_nu : array of size nfr corresponding to the line profile (Voigt profile) φν (not
normalized)

• M : array of size nfr corresponding to integration weights (intermediate) in fre-
quency

• W : array of size nfr corresponding to integration weights in frequency, normalized
and proportional to profile φν

⋆ Module lambda_it_simple_mod (lambda_it_simple.f90 file) :

• a,b,c,d : arrays of size nxmod corresponding to tridiagonal matrix coefficients A,
B, et C (1.1.19) and to coefficient D of Gaussian elimination (1.1.21)

⋆ Module ali_mod (ali.f90 file) :

• a,b,c,d,e : arrays of size nxmod corresponding to tridiagonal matrix coefficients A,
B, et C (1.1.19), to coefficient D of Gaussian elimination (1.1.21) and to coeffi-
cient E of diagonal matrix Λ∗

µν (1.1.30)

1.1.7.2 Subroutine description in each module

Module general_mod (general.f90 file)

Module general_mod contains subroutines used for Λ-iteration and ALI methods.

Subroutine grilles : this subroutine provides different grids for modeling a semi-infinite
atmosphere. More specifically,
- we consider a generic optical thickness grid τ in cm defined by array xmod of size nxmod
- we consider a grid of reduced frequencies (xi, i=1,..,nfr) defined by array XFR of size nfr
- we choose Voigt profile as line profile φν (at each frequency), non-normalized. The profile
is represented by array phi_nu
- the optical depth grid at a given frequency (τν) is equal to τ multiplied by φν (1.1.5)
- we consider a grid of directions µ = cos θ (array mu). µ is non-zero
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- we calculate weights relative to frequency (used for computation of J) : since profile φν is
not normalized, we compute weight W normalized and proportional to φν. For this, we first
compute weights M in frequency using subroutine trapez, which is multiplied by φν and which
is normalized. Thus we obtain W.

Subroutine trapez : this subroutine calculates integration weights.

Subroutine coeff_mat_tridiagonale : a, b, c are respectively coefficients Ad, Bd, Cd,
1 ≤ d ≤ Nd = nxmod of tridiagonal matrix T (1.1.19).

Function VOIGT, Function W4: This is the VOIGT function described in Humlicek
(1982) and Hui (1978).

Subroutine elimination_gauss : This subroutine implements formulas for Gaussian elimi-
nation. Vector EE of this subroutine is the second member (1.1.20) of linear system (1.1.18).
The quantities d and z are Dd and Zd (1.1.21). Variables a, b and c are the coefficients of
tridiagonal matrix T (1.1.19). u is the solution of RTE (1.1.7) given by formula (1.1.22).

Subroutine calcul_J_nu : This subroutine computes Jν (1.1.4) using the following formula
(see Λ-iteration algorithm in section 1.1.3) :

Jν(τ, ν) =
∫ 1

−1
Iµν dµ = 2

∫ 1

0
u dµ =

Nµ
∑

i=1
ui.αi, where (αi)i are integration weights. We

choose (αi)i = 1/nmu.

Subroutine calcul_J_bar : We compute J using the following formula (see Λ-iteration
algorithm in section 1.1.3) :

J(τ) =
∫ ∞

0
Jν φν dν =

Nfreq
∑

j=1
Jν(j).W (j), where W is integration weight in frequency and is

proportional to φν and normalized. W is computed in subroutine grilles.

Module lambda_it_simple_mod (lambda_it_simple.f90 file)

This module contains subroutine methode_lambda_it_simple which uses the algorithm of
Λ-iteration explained in section 1.1.3. As we consider boundary conditions of order 1, we
make the following 2 initializations:
- the source function S at the first point of the grid τν is equal to the source function at the
second point of the grid
- the source function S at the last point of the grid τν is equal to the source function at the
previous point.

Module ali_mod (ali.f90 file)

This module contains subroutines needed to solve RTE, using ALI method.
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Subroutine methode_ali : this subroutine uses ALI algorithm described in section 1.1.4
as well as acceleration of ALI scheme described in 1.1.5.

Subroutine elements_diag_lambda_etoile_mu_nu : we compute diagonal matrix Λ∗
µν

given by formulas (1.1.29)-(1.1.31).

Subroutine operateur_lambda_etoile : we compute operator Λ∗ given by the following
formula :

Λ∗ =
∑

µ,ν

Λ∗
µν.δµν, where δµν is the integration weight in ν (which is proportional to φν and

normalized) and in µ. We choose for integration weight in µ : 1/nmu. Integration weight in
frequency used here is the one (W) computed in subroutine grilles.

Subroutine calcul_S_ali : we compute source function S in an iterative way, given by
formula (1.1.27). As for Λ-iteration scheme, we consider boundary conditions of order 1, thus
we make the same initializations, namely :
- the source function S at the first point of the grid τν is equal to the source function at the
second point of the grid
- the source function S at the last point of the grid τν is equal to the source function at the
previous point.

Subroutine calcul_J_bar_ali : we compute J in the same way as in subroutine meth-
ode_lambda_it_simple.

Subroutine acceleration_ali : we implement algorithm of acceleration of ALI scheme
(section 1.1.5), in particular coefficients A1, B1, A2, B2, C1, C2 given by (1.1.37). The
quantities a_acc and b_acc are coefficients a and b of formulas (1.1.36).

1.1.8 Running numerical program

• make clean

• make

• ./lambda_it

Result files (fort.112, fort.113, fort.92) are read by gnuplot software (instructions are in
subroutines methode_ali and methode_lambda_it_simple).

1.2 Solar filament

In this section, we solve non-LTE radiative transfer equation (RTE) using accelerated ALI
method in the case of a solar filament, in 1D, with CRD (complete frequency redistribution)
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and Voigt profile. For this, we consider a realistic and finite layer (horizontal layer, no sym-
metry here) and a realistic two-level atom (hydrogen atom and Lyman Alpha line Lα).

In this case, coefficient a of Voigt profile, ε and B are not constant values. We need to
calculate them. Moreover, it is necessary to introduce population equations.

1.2.1 Filament modeling

In the modeling (see figure 1.7), a filament is represented by a horizontal plane-parallel slab
with optical depth τ, located above the surface of the sun.

In the case of a filament, the probability of collisional destruction ε (or extinction coefficient)
is computed from transition rates by electronic collision (C12, C21) and Einstein coefficients
(A21, B12, B21, A12 = 0).

Altitude of the filament is used to calculate dilution factors, which are used to compute
incident intensities from solar intensities (input) and therefore to calculate lower BC (boundary
condition) Iinf (here Isup = 0).

1.2.2 Two-level atom and statistical equilibrium

The transitions considered here are Bound-Free and Bound-Bound, which are represented in
figure 1.8. Bound-Free transitions are between a bound state i and a continuum, producing
a free electron with energy ε. It starts from excited states limit, i.e. ε = 0. Bound-Bound
transitions are from level i to level j.

i

j

∞

hνi∞

hνij

ε

hν

Bij : Einstein B coefficient

for absorption process

Bji : Einstein B coefficient

for induced emission process

ε : energy of the free electron

Aji : Einstein A coefficient

probability". (Aij = 0)

i.e. "spontaneous emission

Figure 1.8: Transition types considered.
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radiation

BC (bottom) : Iinf = incident intensity in Lα line of hydrogen

Figure 1.7: Solar filament model (figure is not to scale).
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Let’s consider level j in figure 1.8. We introduce population equations (or equations
of statistical equilibrium) for this level which give the equilibrium between population and
depopulation processes of level j from other levels i :

n
∑

j 6=i

Ni Pij = Nj

n
∑

j 6=i

Pji (1.2.1)

Ni (respectively Nj) is the (density of) population of level i (respectively of level j).
The transition rate of level j (depopulation of j) is :

Pji = Aji + Bji J̄ij + Cji (1.2.2)

where Cji is the collisional deexcitation rate and is proportional to the electron density. Aji

and Bji are Einstein coefficients.
The transition rate of level i (population of j) is :

Pij = Bij J̄ij + Cij

where Cij is the excitation rate by collisions. Here, Aij = 0.
The right-hand side term in population equations (1.2.1) represents all processes which de-
populate level j and the left-hand side term corresponds to all levels which populate level j.
To close the system of population equations, we use the following conservation equation for
the considered element (i.e. hydrogen atom) :

n
∑

j=1
Nj = NT (1.2.3)

where NT is the total population of the atomic element.

In the case of a two-level atom (n = 2), population equations are reduced to :

N1 P12 = N2 P21
⇐Ñ N1 (B12 J + C12) = N2 (A21 + B21 J + C21) (1.2.4)

where
P12 = B12 J + C12

and
P21 = A21 + B21 J + C21

Here, J12 = J since we have only one line (Lα).

We establish below the formulas necessary for implementation of the numerical code in the
case of a solar filament (ε, B12, B21, C12, C21, ...).

• Absorption coefficient integrated on frequency (or total absorption coefficient) :

κ = hν0
4π

N1 B12, (1.2.5)
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ν0 being line center frequency (Lα). This formula (1.2.5) is valid when the profile is

normalized, i.e.
∫

φν dν = 1, ν being the frequency.

• Spontaneous emission :

eS = hν0
4π

N2 A21 (1.2.6)

• Induced emission :

eI = hν0
4π

N2 B21 J (1.2.7)

• Relations between Einstein coefficients :

According to Jefferies (1968) :

B21 = c2

2hν3
0

A21 (1.2.8)

The relation between Einstein coefficients is :

g1 B12 = g2 B21

⇐Ñ g1
g2

B12 = c2

2hν3
0

A21

⇐Ñ B12 = g2
g1

c2

2hν3
0

A21
(1.2.9)

According to (1.2.5), the total absorption coefficient is :

κ = hν0
4π

N1
g2
g1

c2

2hν3
0

A21 (1.2.10)

Then, the induced emission is :

eI = hν0
4π

N2
c2

2hν3
0

A21 J (1.2.11)

• Global source function : induced emission is treated as a negative absorption.

Two cases :

- Case 1 : simple case where eS ∝ N2, κ ∝ N1 et eI ∝ N2

S = eS

κ − eI/J
(1.2.12)
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- Case 2 : more complicated for statistical equilibrium

S = eS + eI

κ

We consider case 1. According to (1.2.6), (1.2.10) and (1.2.11), we have :

S = N2
c2

2hν3
0

(
N1 g2

g1 − N2
) = 2hν3

0
c2

1
N1
N2

g2
g1 − 1 (1.2.13)

• Relation between C12 (excitation rate by collisions) and C21 (deexcitation rate by colli-
sions) :

C12 =
(

N2
N1

)

ETL

× C21

C12 = g2
g1

exp

(

−hν0
kT

)

C21, according to Saha law
(1.2.14)

T is electron temperature.

We eliminate B12, B21 and C12 in population equations (1.2.4) :

(1.2.4) ⇐Ñ N1
[g2
g1

c2

2hν3
0

A21 J + g2
g1

exp

(
−

hν0
kT

)
C21

]

= N2
[

A21 + c2

2hν3
0

A21 J + c21
]

⇐Ñ
N1
N2

g2
g1

− 1 = A21 + C21
[1 − exp

(

−hν0
kT

) ]

c2
2hν3

0
A21 J + C21 exp

(

−hν0
kT

)

Then, the source function is :

(1.2.13) ⇐Ñ S = 2hν3
0

c2 ×
C21 exp

(

−hν0
kT

) + c2
2hν30

A21 J

C21
[1 − exp

(

−hν0
kT

) ] + A21
(1.2.15)

Let

ε1 = C21
A21

[1 − exp

(

−hν0
kT

)

]

(1.2.16)

Hence

(1.2.16) ⇐Ñ C21 exp

(

−
hν0
kT

)

= ε1 A21
exp

(

−hν0
kT

)

− 1 (1.2.17)
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Then, according to (1.2.16) and (1.2.17), we have :

(1.2.15) ⇐Ñ S = 2hν3
0

c2 ×

ε1A21
exp

(

hν0
kT

)

−1 + c2
2hν30

A21 J

A21ε1 + A21
⇐Ñ S = 2hν3

0
c2

ε1
1 + ε1

1
exp(hν0

kT
) − 1 + J

1 + ε1
• Planck function B :

In the previous expression of the source function S, we denote by :

B = 2hν3
0

c2
1

exp(hν0
kT

) − 1 (1.2.18)

Then, the source function is : S = ε1 B + J

1 + ε1
.

• Probability of collisional destruction ε :
Let :

ε = ε1
1 + ε1

(1.2.19)

So we obtain the formula (1.1.2) of the source function S = ε B + (1 − ε) J , under the

assumption
∫

φν dν = 1.

Remark 1.2.1 In practice, we compute ε and B. Then, we use accelerated ALI scheme
to calculate S. Finally, we compute populations of levels N1 et N2.

• Computation of N2 : we start from (1.2.13)

S = 2hν3
0

c2
1

N1
N2

g2
g1 − 1

⇐Ñ
N1
N2

= g1
g2

(

1 + 2hν3
0

c2 S

)

We solve the following system :







N1
N2

= g1
g2

(

1 + 2hν3
0

c2 S

)

:= t

N1 = NH − N2
(1.2.20)
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So, the first equation of the system (1.2.20) gives :

N2 = NH

1 + t
(1.2.21)

1.2.3 Implementation

1.2.3.1 Construction of the atmosphere and boundary conditions

1. Initial values : T = 8000 K (electron temperature), thickness=altitude=10000 km,

ν0 = c

1215 × 10−8 s−1 or Hz (Lα center frequency).

2. Position grid in cm : plane-parallel slab representing the filament is divided into
NZ = 91. Let Z be altitude or position of the mesh in cm.

3. In the sake of simplicity and to focus on numerical method, we run PROM7 code for
the following atmosphere model (filament) :

T = 8000 K, p = 0.1 dyn.cm−2, VT = 5 km/s, thickness=altitude = 10000 km,

in order to obtain electron density (Ne) and hydrogen density (NH), which are used in
the computation of ε, B, κ, ...

4. NH = N1 + N2, N2 << N1

• N1 is used to calculate absorption coefficient κ (1.2.10). In the sake of simplicity,
we suppose N1 = NH but in fact, Ne and N1 are calculated from pressure.

• N2 is used to compute coefficient a of VOIGT function.

5. Statistical weights of levels 1 and 2 (hydrogen) : g1 = 2, g2 = 8.

6. Computation of A21 using analytical formula from Johnson (1972) which is implemented
in the numerical code as follows : A21 = AEMS(1, 2), where AEMS is a function.

7. Computation of B21 and B12 from A21, using formulas (1.2.8) and (1.2.9).

8. Computation of C12 and C21 : C12 is calculated from Ne and formula from Johnson
(1972), which is represented in the numerical code by “function CECH”. C12 is defined
by :

C12 = Ne CECH(1, 2, T) exp

(

hν0
kT

)

C21 is deduced from C12 by formula (1.2.14).
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9. Computation of κ from formula (1.2.10), with N1 = NH .

10. Doppler width : ∆νD = ν0
c

√

V 2
T + 2kT

mH

, with mH mass of hydrogen.

11. Computation of extinction coefficient ε according to formulas (1.2.16) and (1.2.19).

12. Optical depth grid τ : is calculated from grid of positions Z and from κ. τ is given by
the following formula :

τ =
∫ Z

0
κ(z′) dz′ ⇐Ñ τ(Z) = τ(Z − 1) + κ(Z) [Z(i) − Z(i − 1)],

where i is the index in position grid Z.

13. Reduced frequency grid : x = ν − ν0
∆νD

= ∆ν

∆νD

,

where ∆ν = ν − ν0 is the relative frequency, and ν = ν0 + x ∆νD is the absolute
frequency. Let xfr be this grid of reduced frequencies, of size nfr.

14. VOIGT profile : we use reduced frequencies defined by array xfr. VOIGT profile φν is
represented in the numerical code by “function VOIGT” (Humlicek, 1982; Hui, 1978):

φν = VOIGT(a, xfr),
where a is VOIGT coefficient, defined below. φν is a non-normalized profile whose :

• integral with respect to reduced frequencies is equal to
√

π,

• integral with respect to relative frequencies is equal
√

π ∆νD.

15. Computation of coefficient a (VOIGT) :

a = DFRCO + DFRNA,

where DFRCO is the collisional broadening, computated by subroutine ELCOH1 in
PROM7 but adapted to Lα line. DFRNA is the natural broadening, defined for Lα line

by
A21
4π

.

16. Non-normalized profile with respect to reduced frequencies :

φx = VOIGT(a, xfr)
17. Normalized profile with respect to relative frequency (∆ν = ν − ν0) :

φν_normalized = φx

aire × ∆νD

, with area = ∫

φx dx = √
π, x is reduced frequency
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18. Optical depth at a given frequency ν : τν is defined by

τν =
∫ τ

0
φν_normalized(τ ′) dτ ′

⇐Ñ τν(z) = τν(z − 1) + 1
2 [φν_normalized(z − 1) + φν_normalized(z)] × [τ(z) − τ(z − 1)]

19. Integration weight W in relative frequency :

• subroutine TRAPEZ in numerical code computes integration weights M applied
to xfr (reduced frequency).

• we multiply M by the normalized profile φν_normalized and we sum.

• W = M.φν_normalized
sum

: normalized weight and proportional to normalized pro-

file.

Remark 1.2.2 This integration weight W in used in the computation of

J =
∫

Jν dν.

Remark 1.2.3 ⋆ Reduced frequency x is only used when VOIGT function is called.

⋆ Most of the time, we work with relative frequencies : ∆ν = ν − ν0 = x∆νD.

⋆ We work with normalized profile with respect to relative frequency : φν_normalized.

20. Computation of dilution factor FADIR for Lα line (hydrogen) :
FADIR is obtained by subroutine INTALT in PROM7, adapted to Lα. There is no
limb-darkening in Lα line.

21. Computation of Planck function B using formula (1.2.18).

22. Computation of lower BC (boundary condition) Iinf using subroutine SOLINH in PROM7
adapted to Lα line.

⋆ We read input file of incident solar intensities “intinc.dat” of Lα (NFINT = 20
values) : fequency in Å (1st column), intensity in erg/cm2/s/sr/Å (2nd column).

⋆ We multiply by
10−8 ν2

0
c

frequencies read in order to obtain them in Hz.

⋆ We multiply solar intensities by 10−8 to obtain them in erg/cm2/s/sr/Hz.

⋆ These solar intensities are then interpolated at relative frequencies (xfr ∆νD).

⋆ Finally, we multiply them by 2 × FADIR to obtain Iinf .

Remark 1.2.4 C12, C21, B12, B21, A21 do not change during the radiative transfer process.
They are fixed by the atmosphere model. The Planck function B is associated with Lα line,
is calculated once at the beginning.
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1.2. SOLAR FILAMENT

1.2.3.2 Method for solving Non-LTE RTE using accelerated ALI scheme

The algorithm using accelerated ALI method for solving RTE (1.1.1) or (1.1.7) is :

1. We calculate source function S by accelerated ALI method described in sections 1.1.4
and 1.1.5, from τ, B and ε.

2. When S has converged, we compute level populations N1 and N2.

Remark 1.2.5 It is possible to compute N1 and N2 at each iteration of convergence as for S

in order to prepare the numerical code for a multilevel atom (MALI). For MALI scheme, we
don’t calculate S but we iterate on level populations. We make convergence of all entities at
the same time .

Figures 1.9 and 1.10 represent source function as a function of optical depth (logarithmic
scale), for a Doppler profile, respectively without acceleration (convergence is reached after
100 iterations) and with Ng acceleration (convergence is reached after 50 iterations).
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Figure 1.9: Source fonction as a function of optical depth (logarithmic scale), using ALI
method, for a Doppler profile (case of a filament). Convergence is reached after 100 itérations.
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Figure 1.10: Source fonction as a function of optical depth (logarithmic scale), using acceler-
ated ALI method, for a Doppler profile (case of a filament). Convergence is reached after 50
itérations.

1.2.4 Description of numerical code

Nature of the physical problem : NLTE radiative transfer (1D) in a filament for a two-level
hydrogen atom (a fundamental and Lα line), without internal velocity field

Method of solution : improved Feautrier method (Rybicki and Hummer, 1991) combined
with :
- ALI (Accelerated Lambda Iteration) method
- acceleration of ALI scheme using Ng method

Other relevant information : we use complete frequency redistribution (CRD). Electron and
hydrogen densities are computed by PROM7 code

Authors : M. Chane-Yook & P. Gouttebroze

Program available from :
https://idoc.ias.u-psud.fr/MEDOC/Radiative transfer codes/Tools for radiative transfer

Computer(s) on which program hab been tested : PC with 4 Intel processors (2.67GHz)

Operating System(s) for which version of program has been tested : Linux

Programming language used : Fortran 90/95 (with gfortran compiler)

Status : stable
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1.2. SOLAR FILAMENT

Accessibility : open (MEDOC)

No. of code lines in combined program and test deck : 1005

Typical running time : < 1 min for 50 iterations of accelerated ALI cycle

References :
- G. B. Rybicki & D. G. Hummer, “An accelerated lambda iteration method for multilevel
radiative transfer. I- Non-overlapping lines with background continuum”, A&A, 245, 171-181,
1991
- F. Paletou, “Transfert de rayonnement : méthodes itératives”, C. R. Acad. Sci. Paris, t.2,
Série IV, 885-898, 2001

In next section, we describe subroutines used in the program.

1.2.5 Description of subroutines

Structure of the program is the same as for a semi-infinite atmosphere but with additions of
subroutines.
Unlike a semi-infinite atmosphere, in the case of a filament, constant parameters become
arrays.

1.2.5.1 Set of variables used in the program

We describe below variables used mainly in module param_mod (param.f90 file) :

• RS=6.96×1010 : solar radius in cm

• h=6.6262 × 10−27 : Planck constant in cm2 g/s

• ryd=2.17875 × 10−11 : Rydberg constant in erg

• bolt=1.38064852 × 10−6 : Boltzmann constant in cm2 g/s2/K

• cl=2.997925 × 1010 : velocity of light in cm/s

• m_H=uma=1.660 × 10−24 : atomic mass unit of hydrogen

• nfr=20 : size of grid of reduced frequencies XFR
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• n_grille=46 : size of grille array (see below)

• NZ=nxmod=91 : size of xmod array (see below). NZ=2× n_grille-1

• nmu=4 : size of direction grid (µ = cos θ)

• coeff_extinction : array of size NZ corresponding to ε

• niter=200 : number of iterations for the convergence of accelerated ALI scheme

• T_in=8000 : temperature in K (model)

• EPST_in=10000 : filament thickness (model) in km

• VT_in=5 × 105 : microturbulence velocity in cm/s (model)

• altitude_in =10000 : filament altitude in km (model)

• NFINT=20 : size of FRFI and FINT arrays for reading solar incident intensities (input)

• I_sup=0 : upper boundary condition

• a_voigt : array of size NZ corresponding to parameter a of Voigt function. When
a = 10−3, we obtain Doppler function

• grille : array of size n_grille used to compute position grid

• position,VT : arrays of size NZ representing respectively position grid and microturbu-
lence velocity

• xmod : array of size nxmod representing generic optical depth τ = (τd)

• xfr : array of size nfr representing reduced frequency xi

42/84



1.2. SOLAR FILAMENT

• mu : array of size nmu representing values of µ = cos θ (direction)

• I_inf : array of size nfr representing incident intensities interpolated at reduced frequen-
cies

• J_bar_ali : array of size nxmod representing J

• J_nu_ali : array of size (nfr,nxmod) representing Jν

• S_ali : array of size (nxmod,niter) representing source fonction S

• N_1, N_2 : arrays of size (nxmod,niter) representing level 1 (fundamental) and level 2
(Lα line) populations, respectively

• u_ali : array of size (nxmod,nfr,nmu) representing solution of RTE for ALI method

• lambda_etoile : array of size nxmod representing Λ∗ matrix

• lambda_etoile_mu_nu : array of size (nxmod,nfr,nmu) representing Λ∗
µν matrix

• tau_nu : array of size (nxmod,nfr) representing optical depth at frequency ν : τν = φν τ

• phi_nu : array of size (nfr,NZ) corresponding to Voigt profile φν (non-normalized pro-
file) for Lα line

• phi_nu_normalise : array of size (nfr,NZ) corresponding to normalized profile with re-
spect to relative frequencies

• M : array of size nfr representing intermediate integration weight with respect to fre-
quency

• W : array of size nfr representing integration weight with respect to frequency, normal-
ized and proportional to the profile phi_nu_normalise

• Ne, NH : arrays of size nxmod representing electron density and hydrogen density, re-
spectively
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• A21, B12, B21 : Einstein coefficients

• C12, C21 : arrays of size nxmod representing collisional excitation rate and collisional
deexcitation rate, respectively

• lambda_0 = 1215 : Lα center wavelength in Å

• gg1=1, gg2=8 : represent statistical weights of hydrogen levels 1 and 2, respectively

• kappa_bar : array of size NZ representing total absorption coefficient κ

• T : array of size NZ representing temperature in K

• delta_nu_D : array of size NZ representing Doppler width

• DFRNA : refers to natural broadening of Lα line

• DFRCO : array of size NZ representing collisional broadening of Lα line

• nu_0=cl/(lambda_0×10−8) : Lα center frequency in s−1 or Hz

• coeff_Lalpha=10−8 : multiplicative coefficient in input file of solar incident intensities
for Lα line

• FADIR : dilution factor for Lα line

• FRFI, FINT : arrays of size NFINT representing respectively frequencies (1st column)
and incident intensities (2nd column) of input file “intensite_incidente_L_alpha”

• EXPHN=2.65, EXPS=2/3,PIA02=π/2, XMEL=9.10956×10−28, CSE=8×bolt/π/XMEL
: constant values.
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1.2.5.2 Description of subroutines in each module

Module general_mod (general.f90 file)

Module general_mod contains subroutines used for ALI method. Here are the modifications
and/or additions of subroutines. The other subroutines remain unchanged compared to those
of semi-infinite atmosphere.

Subroutine grilles : this subroutine sets up different grids for modeling a filament. More
specifically,

1. electron (Ne) and hydrogen (NH) densities obtained by PROM7 code are read

2. model parameters (temperature, microturbulence velocity) are input

3. we consider a general grid of size n_grille=46 which will be used as a basis to calculate
position grid

4. we consider a position grid calculated from previous grid and from filament thickness

5. we compute atomic parameters : A21, B21, B12, C21, C12

6. we compute ε

7. we compute Doppler width ∆νD and total absorption coefficient κ

8. we consider a generic optical depth grid τ in cm represented by xmod array of size
nxmod

9. we consider a reduced frequency grid (xi, i=1,..,nfr) represented by xfr array of size nfr

10. we compute natural broadening DFRNA of Lα line, then collisional broadening DFRCO,
which are used to calculate coefficient a (a_voigt in the code) of VOIGT

11. we choose Voigt profile as line profile φν (at each frequency), which is non-normalized
with respect to reduced frequencies. The profile is represented by phi_nu array

12. we compute
∫

φν dν (area by trapezoidal rule) in order to calculate normalized line
profile with respect to relative frequency (array phi_nu_normalise in the code)

13. we consider optical depth grid at a given frequency ν : τν

14. we consider a grid of directions µ = cos θ (array mu). µ must be different to 0

15. computation of weights in relative frequencies M using subroutine TRAPEZ (for the
calculation of J) : since φν profile is not normalized, we compute weight W which is
normalized and proportional to phi_nu_normalise

16. we compute dilution factor FADIR

17. we calculate lower boundary condition I_inf from incident intensities (subroutine SOLINH)
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Subroutine elimination_gauss : This subroutine implements formulas for Gaussian elim-
ination. One must pay attention to initialization of second member of the linear system
(1.1.18) : the first component is initialized at Isup = 0, the last component is initialized at
Iinf (incident intensity calculated by SOLINH subroutine) at a given frequency, and the other
components are initialized by source function.

Subroutine INTERL : it is a linear interpolation subroutine.

Subroutine calcul_coefficient_extinction : we compute ε using formula (1.2.19).

Subroutine integration_trapezes : this subroutine is used to calculate area using trape-
zoidal rule.

Subroutine SOLINH : this subroutine reads incident intensities input file “intensite_incidente_L_alpha”.
The 2 columns (there are NFINT=20 values for frequency and intensity) are multiplied by
factors in order to have Hz and erg/cm2/s/sr/Hz as units for frequency and intensity. Then
an interpolation is made with respect to relative frequency ∆ν = x ∆νD for the intensities
(I_inf), which are multiplied by 2 times the dilution factor.

Function BENU : it is Planck function given by formula (1.2.18).

Subroutine INTALT : this subroutine computes dilution factor for Lα line.

Function EXPINT : this function is used to compute collisional excitation rate.

Subroutine ELCOH1 : this subroutine computes collisional broadening DFRCO for Lα line
(hydrogen).

Function AEMS : AJI is obtained by AEMS function (in PROM7 code) which is computed
from “Gaunt factors” (Table 1 from Johnson (1972)).

Function CECH : this function computes collisional excitation rates (coefficients) called
Se in the formulas below.
Let n and n′ be two levels (n < n′). The excitation rate (coefficient) is given by the following
formula (Johnson (1972)) :

Se(n, n′) = (8kT/πm)1/2 2n2

x
π a2

0 y2
(

Ann′

[(1
y

+ 1
2

)

E1(y) −
(1

z
+ 1

2
)

E1(z)
])

+ (8kT/πm)1/2 2n2

x
π a2

0 y2
([

Bnn′ − Ann′ ln 2n2

x

] [ 1
y

E2(y) − 1
z

E2(z)
])

(1.2.22)
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Ei(z) =
∫ ∞

1
e−zt t−i dt is called Exponential integral of order i (i = 0, 1, 2, ...).

m denotes the electron mass and a0 = 0.5292 10−8 cm the Bohr radius.
Here and below, En denotes level energy of n for hydrogen. We have :

y = (En′ − En)/kT,

z = rnn′ + y,

x = 1 − (n/n′)2,
Bnn′ = 4n4

n′3 x−2 (1 + 4
3x−1 + bn x−2),

bn = n−1(4 − 18.63n−1 + 36.24n−2 − 28.09n−3), n ≥ 2,

Ann′ = 2n2 x−1 fnn′ ,

fnn′ = 32
3√3 π

n

n′3 x−3 g(n, x),

g(n, x) = g0(n) + g1(n) x−1 + g2(n) x−2,
rnn′ = rn x,

rn = 1.94n−1.57

where g0, g1, g2 are Gaunt factors for pour Bound-Free transitions, given in Table 1.1 (Table
1 from Johnson (1972)) :

n = 1 n = 2 n ≥ 3
g0(n) 1.11330 1.0785 0.9935 + 0.2328n−1 − 0.1296n−2

g1(n) −0.4059 −0.2319 −n−1(0.6282 − 0.5598n−1 + 0.5299n−2)
g2(n) 0.07014 0.02947 n−2(0.3887 − 1.181n−1 + 1.470n−2)

Table 1.1: Gaunt factors.

Module ali_mod (fichier ali.f90)

This module contains several subroutines necessary for solving RTE using accelerated ALI
method.

Subroutine methode_ali : accelerated ALI scheme remains unchanged compared to the
case of a semi-infinite atmosphere except :
- at the beginning, we initialize source function to Planck function defined by BENU function
(in the program)
- in the convergence iteration loop, level populations (subroutine calculation_population) are
computed after source function computation.

Subroutine calcul_S_ali : in the case of a filament, extinction coefficient ε is not a fixed
parameter but a vector. It is the same for Planck function.
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Subroutine calcul_population : this subroutine was added to calculate populations of
level 1 (N1) and level 2 (N2) using formulas (1.2.20) and (1.2.21).

1.2.6 Running numerical program

• make clean

• make

• ./lambda_it

Result files (fort.110, fort.101, fort.102, fort.113, fort.120) are read by gnuplot free soft-
ware whose commands can be found in methode_ali subroutine.

1.3 Solar prominence

Non-LTE radiative transfer equation (RTE) is solved using accelerated ALI method for a
solar prominence, in 1D and CRD (complete frequency redistribution) with Voigt profile. For
this, we consider a realistic and finite vertical slab. More precisely a half-slab because it is
symmetrical (radiation). We consider moreover a realistic two-level atom (hydrogen atom and
Lα line).
The only differences from a filament case are:

• half-slab instead of full-slab

• boundary conditions must be rewritten (tridiagonal matrix).

1.3.1 Prominence modeling

Picture 1.11 represents an erupting prominence observed by SDO/AIA (2012/08/30) at 304Å
and 171Å wavelengths.

In the modeling (see figure 1.12), a prominence is represented by a plane-parallel slab with
thickness e, standing vertically above the solar surface (at altitude h) and irradiated on both
sides by the Sun. It is a 1D representation. Each side of this symmetrical model is illuminated
by incident radiation from the photosphere, chromosphere and solar corona. This radiation
field is very important since it determines the boundary conditions for solving RTE (1.1.1)
or (1.1.7). Inside the prominence, the initial condition is defined by 3 physical parameters:
electronic temperature, T, pressure, P, microturbulence velocity, VT . Due to the symmetry of
the problem, calculations can be done in a half slab

Formulas for a two-level atom and for statistical equilibrium are the same as for a filament.
Implementation and setup of the atmosphere have the same structure as for a filament. Only
boundary conditions differ from those of a filament.
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Figure 1.11: Erupting solar prominence observed by SDO/AIA, at 304Å and 171Å wavelengths,
2012/08/30.

1.3.2 Accelerated ALI method and boundary conditions

1.3.2.1 Boundary conditions

In the case of a prominence, instead of Iinf we have two boundary conditions :

1. on the surface of the prominence : it is the same boundary condition (Iinf) for the case
of a filament but divided by 2 because we are only interested in half a slab here. So

we have Isup(τ = 0) = 1
2×incident intensity in Lα line of hydrogen. In other words,

Isup(prominence) = 1
2Iinf(filament)

2. in the center of the prominence : we start from discretized equations of section 1.1.2.
We have :

I+(τmax) = I−(τmax), (1.3.1)

with I−(τmax) = I(τmax, −µ, ν) and I+(τmax) = I(τmax, µ, ν).
We have u = 1

2(Iµν + I−µν) and v = 1
2(Iµν − I−µν) according to (1.1.8) and (1.1.9).

Then :

u(τmax, µ, ν) = 1
2 [I(τmax, µ, ν) + I(τmax, −µ, ν)]

⇐Ñ u(τmax, µ, ν) = 1
2 [I+(τmax) + I−(τmax)]

⇐Ñ u(τmax, µ, ν) = I+(τmax), according to (1.3.1)

(1.3.2)
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....
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2× incident
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I− : intensity towards the observer

Observer
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Figure 1.12: Prominence model (figure is not to scale).
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And
v(τmax, µ, ν) = 0 (1.3.3)

According to (1.1.12), we have µ
du

dτν

= v. Then
du

dτν

(τmax, µ, ν) = 0 according to

(1.3.2) and (1.3.3).

The discretization of order 1 gives : :

uNd
− uNd−1 = 0

⇐Ñ −ANd−1.uNd−1 + BNd
.uNd

− CNd+1.uNd+1 = ENd
,

with ANd−1 = 1, BNd
= 1, ENd

= 0 (last coefficients of tridiagonal matrix and second
member (see subroutine elimination_gauss)).

1.3.2.2 Method for solving Non-LTE RTE using accelerated ALI scheme

Accelerated ALI algorithm for solving RTE, and program structure for a prominence are the
same as for a filament.

Remark 1.3.1 NZ = 46 instead of 91 for the grid of positions.

Figures 1.13 and 1.14 represent source function with respect to optical depth (logarithmic
scale), for a Doppler profile, respectively without Ng acceleration (convergence reached after
50 iterations) and with Ng acceleration (convergence reached after 20 iterations). This is the
representation of a half-slab.
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Figure 1.13: Source function with respect to optical depth (logarithmic scale), using ALI
method for a Doppler profile (case of a prominence). Convergence is reached after 50 itera-
tions.
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Figure 1.14: Source function with respect to optical depth (logarithmic scale), using acceler-
ated ALI method for a Doppler profile (case of a prominence). Convergence is reached after
20 iterations.

1.3.3 Description of numerical code

Nature of the physical problem : NLTE radiative transfer (1D) in a prominence for a two-level
hydrogen atom (a fundamental and Lα line), without internal velocity field

Method of solution : improved Feautrier method (Rybicki and Hummer, 1991) combined
with :
- ALI (Accelerated Lambda Iteration) method
- acceleration of ALI scheme using Ng method

Other relevant information : we use complete frequency redistribution (CRD). Electron and
hydrogen densities are computed by PROM7 code

Authors : M. Chane-Yook & P. Gouttebroze

Program available from :
https://idoc.ias.u-psud.fr/MEDOC/Radiative transfer codes/Tools for radiative transfer

Computer(s) on which program hab been tested : PC with 4 Intel processors (2.67GHz)

Operating System(s) for which version of program has been tested : Linux

Programming language used : Fortran 90/95 (with gfortran compiler)

Status : stable
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Accessibility : open (MEDOC)

No. of code lines in combined program and test deck : 1014

Typical running time : < 1 min for 20 iterations of accelerated ALI cycle

References :
- G. B. Rybicki & D. G. Hummer, “An accelerated lambda iteration method for multilevel
radiative transfer. I- Non-overlapping lines with background continuum”, A&A, 245, 171-181,
1991
- F. Paletou, “Transfert de rayonnement : méthodes itératives”, C. R. Acad. Sci. Paris, t.2,
Série IV, 885-898, 2001

In next section, we describe subroutines used in the program.

1.3.4 Description of subroutines

Structure of the program is the same as for a solar filament but with modifications for boundary
conditions.

1.3.4.1 Set of variables used in the program

We describe variables used in module param_mod (param.f90 file) :

• nfr=20 : size of reduced frequency grid XFR

• n_grille=46 : size of grille array (see below)

• NZ=nxmod=n_grille : size of xmod array (see below)

• nmu=4 : size of direction grid µ = cos θ

• coeff_extinction : array of size NZ corresponding to ε

• niter=200 : number of iterations for the convergence of accelerated ALI scheme

• T_in=8000 : temperature in K (model)

• EPST_in=10000 : prominence thickness (model) in km
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• VT_in=5 × 105 : microturbulence velocity in cm/s (model)

• altitude_in =10000 : prominence altitude in km (model)

• NFINT=20 : size of FRFI and FINT arrays for reading solar incident intensities (input)

• a_voigt : array of size NZ corresponding to parameter a of Voigt function. When
a = 10−3, we obtain Doppler function

• grille : array of size n_grille used to compute position grid

• position,VT : arrays of size NZ representing respectively position grid and microturbu-
lence velocity

• xmod : array of size nxmod representing generic optical depth τ = (τd)

• xfr : array of size nfr representing reduced frequency xi

• mu : array of size nmu representing values of µ = cos θ (direction)

• I_sup : array of size nfr representing incident intensities interpolated at reduced fre-
quencies

• J_bar_ali : array of size nxmod representing J

• J_nu_ali : array of size (nfr,nxmod) representing Jν

• S_ali : array of size (nxmod,niter) representing source fonction S

• N_1, N_2 : arrays of size (nxmod,niter) representing level 1 (fundamental) and level 2
(Lα line) populations, respectively

• u_ali : array of size (nxmod,nfr,nmu) representing the solution of RTE for ALI method

• lambda_etoile : array of size nxmod representing Λ∗ matrix
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• lambda_etoile_mu_nu : array of size (nxmod,nfr,nmu) representing Λ∗
µν matrix

• tau_nu : array of size (nxmod,nfr) representing optical depth at frequency ν : τν = φν τ

• phi_nu : array of size (nfr,NZ) corresponding to Voigt profile φν (non-normalized pro-
file) for Lα line

• phi_nu_normalise : array of size (nfr,NZ) corresponding to normalized profile with re-
spect to relative frequencies

• M : array of size nfr representing intermediate integration weight with respect to fre-
quency

• W : array of size nfr representing integration weight with respect to frequency, normal-
ized and proportional to the profile phi_nu_normalise

• Ne, NH : arrays of size nxmod representing electron density and hydrogen density, re-
spectively

• A21, B12, B21 : Einstein coefficients

• C12, C21 : arrays of size nxmod representing collisional excitation rate and collisional
deexcitation rate, respectively

• lambda_0 = 1215 : Lα center wavelength in Å

• gg1=1, gg2=8 : represent statistical weights of hydrogen levels 1 and 2, respectively

• kappa_bar : array of size NZ representing total absorption coefficient κ

• T : array of size NZ representing temperature in K

• delta_nu_D : array of size NZ representing Doppler width

• DFRNA : refers to natural broadening of Lα line
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• DFRCO : array of size NZ representing collisional broadening of Lα line

• nu_0=cl/(lambda_0×10−8) : Lα center frequency in s−1 or Hz

• nu : array of size nfr representing absolute frequency ν = ν0 + xfr × ∆νD

• coeff_Lalpha=10−8 : multiplicative coefficient in input file of solar incident intensities
for Lα line

• FADIR : dilution factor for Lα line

• FRFI, FINT : arrays of size NFINT representing respectively frequencies (1st column)
and incident intensities (2nd column) of input file “intensite_incidente_L_alpha”

• EXPHN=2.65, EXPS=2/3,PIA02=π/2, XMEL=9.10956×10−28, CSE=8×bolt/π/XMEL
: constant values

1.3.4.2 Description of subroutines in each module

Main modifications concern module general_mod.

Module general_mod (general.f90 file)

Module general_mod contains subroutines used for ALI method.

Subroutine grilles : this subroutine sets up different grids for modeling a prominence. More
specifically,

1. electron (Ne) and hydrogen (NH) densities obtained by PROM7 code are read

2. model parameters (temperature, microturbulence velocity) are input

3. we consider a general grid of size n_grille=46 which will be used as a basis to calculate
position grid

4. we consider a position grid calculated from previous grid and from prominence thickness

5. we compute atomic parameters : A21, B21, B12, C21, C12

6. we compute ε
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7. we compute Doppler width ∆νD and total absorption coefficient κ

8. we consider a generic optical depth grid τ in cm represented by xmod array of size
nxmod

9. we consider a reduced frequency grid (xi, i=1,..,nfr) represented by xfr array of size nfr

10. we compute absolute frequencies ν = ν0 + xfr × ∆νD

11. we compute natural broadening DFRNA of Lα line, then collisional broadening DFRCO,
which are used to calculate coefficient a (a_voigt in the code) of VOIGT

12. we choose Voigt profile as line profile φν (at each frequency), which is non-normalized
with respect to reduced frequencies. The profile is represented by phi_nu array

13. we compute
∫

φν dν (area by trapezoidal rule) in order to calculate normalized line
profile with respect to relative frequency (array phi_nu_normalise in the code)

14. we consider optical depth grid at a given frequency ν : τν

15. we consider a grid of directions µ = cos θ (array mu). µ must be different to 0

16. computation of weights in relative frequencies M using subroutine TRAPEZ (for the
calculation of J) : since φν profile is not normalized, we compute weight W which is
normalized and proportional to phi_nu_normalise

17. we compute dilution factor FADIR

18. we compute upper boundary condition I_sup from incident intensities (subroutine SOLINH)

Subroutine elimination_gauss : This subroutine implements formulas for Gaussian elim-
ination. One must pay attention to initialization of second member of the linear system
(1.1.18) : the first component is initialized at Isup at a given frequency (incident intensity
calculated by SOLINH subroutine), the last component is zero, and the other components are
initialized by source function.

Subroutine SOLINH : this subroutine reads incident intensities input file “intensite_incidente_L_alpha”.
The 2 columns (there are NFINT=20 values for frequency and intensity) are multiplied by
factors in order to have Hz and erg/cm2/s/sr/Hz as units for frequency and intensity. Then
an interpolation is made with respect to relative frequency ∆ν = x ∆νD for the intensities
(I_sup), which are multiplied by dilution factor.

1.3.5 Running numerical program

• make clean

• make

• ./lambda_it
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Result files (fort.100, fort.101, fort.102, fort.113) are read by gnuplot free software whose
commands can be found in methode_ali subroutine.

1.4 Conclusion

In this chapter 1, 1D radiative transfer for a two-level atom, in the case of a solar semi-infinite
atmosphere, a solar filament and a solar prominence, using complete frequency redistribution
(CRD), is treated.

More precisely, transfer equation (1.1.7) is discretized by finite difference method to ob-
tain a linear system (1.1.18) which is solved by Gaussian elimination (1.1.21)-(1.1.22), to
determine intensity u. Two iterative schemes that update source function S step by step
are implemented : Λ-iteration method and ALI method. Then, ALI scheme is accelerated
by Ng method (see section 1.1.5), which consists in accelerating every third iteration of ALI
convergence.

In the case of a semi-infinite atmosphere, for B = 1, ε = 10−4, we obtain the same
results (figures 1.3 and 1.4) as Paletou (2001). This validates the results of iterative schemes.
Λ-itération method still does not converge to the solution after 200 iterations (and after 1500
iterations). ALI method converges to the solution after 100 iterations and accelerated ALI
method converges to the solution after 20 iterations.

Accelerated ALI scheme is then applied to solar filaments and prominences. In these cases,
geometry of the problem is different.

In next chapter, we are interested in the case of a multilevel atom.
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2.1 Multilevel formulation

In this chapter, we are interested in self-consistent solution of statistical equilibrium equations
with non-LTE radiative transfer equations corresponding to each 1D-treated transition for a
multilevel atom. We consider the following assumptions :

− non-overlapping lines

− there is no ionization/recombination, more generally no ionization equilibrium : only
transitions between 2 levels are considered (bound-bound transitions)

− with no background continuum (with no continuum absorption, see section 2.3), then
with background continuum (with continuum absorption, see section 2.4)

− no internal velocity field : the structure is considered as static in the atmosphere but
can be easily modified (see boundary conditions)

− complete frequency redistribution (CRD)

The treatment of multilevel lines is equivalent to simultaneously solving statistical equilibrium
equations for level populations and each radiative transfer equation (RTE) for each transition.
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In this section, we describe radiative transfer equations and population equations for the
case of a multilevel atom (Rybicki and Hummer, 1991). In next section, we present the nu-
merical method used (MALI: Multi Accelerated Lambda Iteration).

According to Rybicki and Hummer (1991), the Radiative Transfer Equation (RTE) is :

µ
∂Iµν

∂z
= −χµν.Iµν + ηµν, (2.1.1)

where Iµν is the specific intensity, χµν is the total opacity and ηµν is the total emissivity at
frequency ν and for angle θ.

An atom/ion is considered to have several l, l′, ... levels. Let nl be the (density of) pop-
ulation of level l. Each level is characterized by its statistical weight gl and its energy El.

Notations 2.1.1 For example, if l′ < l, then we have the following scheme :
El′ < El ⇐Ñ l′ < l (see figure 2.1 below).

l′

l

energy in cm−1

El

El′

Figure 2.1: Levels l and l′ of an atom/ion and their corresponding energy.

Let’s consider transition between l and l′ levels (see figure 2.1). Radiative properties of ll′

line are characterized by its emissivity ηll′ and its opacity χll′ (these quantities may depend on
µ in the presence of velocity fields).

For l > l′, we have :

ηll′(µ, ν) = hν

4π
nl All′ φll′(µ, ν)

χll′(µ, ν) = hν

4π
(nl′ Bl′l − nl Bll′ ) φll′ (µ, ν),

(2.1.2)

All′ (spontaneous emission), Bll′ (stimulated emission) and Bl′l (absorption) are the Einstein
coefficients, and φll′(µ, ν) is the normalized line profile function.
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Source function of the radiative transition ll′ (i.e. line) is (l > l′) :

Sll′ = nl All′

nl′ Bl′l − nl Bll′
(2.1.3)

Remark 2.1.1 In CRD, Sll′ is independent of frequency ν. We assume that radiation scat-
tering on massive particles is isotropic, so Sll′ is also independent of direction µ.
In PRD (Partial Frequency Redistribution), φll′ 6= φl′l, so the source function depends on
frequency ν.

Total emissivity ηµν and total absorption coefficient χµν are :

ηµν =
∑

l>l′

ηll′(µ, ν) + ηc(ν)

χµν =
∑

l>l′

χll′(µ, ν) + χc(ν),
(2.1.4)

where ηc(ν) and χc(ν) are the background emissivity and opacity.

Remark 2.1.2 Total emissivity ηµν and total absorption coefficient χµν are functions of ni

(population of levels).

The total source function is then given by :

Sµν = ηµν

χµν

(2.1.5)

The equations of statistical equilibrium for the ion populations may be written :

nl

∑

l′

(Rll′ + Cll′) =
∑

l′

nl′ (Rl′l + Cl′l), (2.1.6)

where Cll′ are the collisional rate coefficients and Rll′ are the radiative rate coefficients, given
by :

Rll′ = All′ + Bll′ J̄ll′, l > l′ : emission

Rll′ = Bll′ J̄ll′, l < l′ : absorption,

(2.1.7)

where J̄ll′ is the integrated mean intensity (integrated on direction µ = cos θ for ll′ line),
defined by :

J̄ll′ = 1
4π

∫

dΩ
∫

φll′ (µ, ν) Iµν dν (2.1.8)

Thus, we may write population equations (2.1.6) in the convenient form (let’s consider level
l. Levels l′ are the other levels of the atomic model) :
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∑

l′<l

[nl All′ − (nl′ Bl′l − nl Bll′ ) J̄ll′ ]

−
∑

l′>l

[nl′ Al′l − (nl Bll′ − nl′ Bl′l) J̄ll′ ]

+
∑

l′ 6=l

(nl Cll′ − nl′ Cl′l) = 0

(2.1.9)

And we use the following closure conservation equation :

∑

l

nl = NT , where NT is the total population of the atomic element.

Proof of (2.1.9) :

Reminder 2.1.1 Radiative and collisional processes (i.e. transitions between two levels) be-
tween two energy levels l and l′ of an atom or ion are :

− spontaneous emission (of a photon) characterized by rate All′

− stimulated emission characterized by coefficient Bll′.J̄

− radiative absorption characterized by coefficient Bl′l.J̄ (J̄ depends on radiation)

− collisional excitation characterized by coefficient Cl′l

− collisional deexcitation characterized by coefficient Cll′ .

These processes are represented in figure 2.2.

We start from equation (2.1.6). Let’s consider level l, l′ being the other levels of atomic
model.
The first left-hand side term in (2.1.6) can be written as (ne is implicit in Cll′) :

nl

∑

l′

(Rll′ + Cll′) =
∑

l<l′

nl Rll′ +
∑

l>l′

nl Rll′ +
∑

l′ 6=l

nl Cll′ according to (2.1.7)

=
∑

l<l′

nl Bll′ J̄ll′ +
∑

l>l′

nl (All′ + Bll′ J̄ll′) +
∑

l′ 6=l

nl Cll′

=
∑

l′>l

nl Bll′ J̄ll′ +
∑

l′<l

nl All′ +
∑

l′<l

nl Bll′ J̄ll′ +
∑

l′ 6=l

nl Cll′

(2.1.10)
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absorption

emission

l (upper)

l′ (lower)

All′

Bll′ J̄

Bl′l J̄

Cll′

Cl′l

spontaneous

stimulated
emission

collisional
excitation

collisional

deexcitation

Figure 2.2: Different radiative and collisional processes between two energy levels l and l′

(l′ < l) of an atom or ion.

The second right-hand side term in (2.1.6) can be written as :

∑

l′

nl′ (Rl′l + Cl′l) =
∑

l′<l

nl′ Rl′l +
∑

l′>l

nl′ Rl′l +
∑

l′ 6=l

nl′ Cl′l (2.1.11)

In CRD we have J̄ll′ = J̄l′l. According to (2.1.7), the right-hand side term in (2.1.11) can be
written as :

∑

l′<l

nl′ Bl′l J̄ll′ +
∑

l′>l

nl′ Al′l +
∑

l′>l

nl′ Bl′l J̄ll′ +
∑

l′,l′ 6=l

nl′ Cl′l (2.1.12)

Thus, population equations (2.1.6) are (we consider level l, l′ being the other levels) :

∑

l′>l

nl Bll′ J̄ll′ +
∑

l′<l

nl All′ +
∑

l′<l

nl Bll′ J̄ll′ +
∑

l′,l′ 6=l

nl Cll′ −
∑

l′<l

nl′ Bl′l J̄ll′

−
∑

l′>l

nl′ Al′l −
∑

l′>l

nl′ Bl′l J̄ll′ −
∑

l′,l′ 6=l

nl′ Cl′l = 0

By grouping the different terms together, we obtain (2.1.9). �
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2.2 Iterative method and operator choice

2.2.1 MALI method

The MALI scheme to be introduced here is based on the operator splitting technique given in
equation (1.2) from Rybicki and Hummer (1991) :

Iµν = Λ∗
µν[Sµν] + (Λµν − Λ∗

µν)[S†
µν], (2.2.1)

Equation (2.2.1) gives Iµν in terms of the populations. It is important to note that S†
µν as well

as the operators Λµν and Λ∗
µν are constructed from the old populations n

†
l computed at the

previous iteration.

The new populations nl enter only though the source function Sµν which is expressed in
terms of them by way of equations (2.1.2), (2.1.4) and (2.1.5).

If this form for Iµν (2.2.1) is substituted into equation (2.1.8) and the resulting form for
J̄ll′ is substituted into equations (2.1.9), then the statistical equilibrium equations are ex-
pressed solely in terms of knows quantities and the new populations nl (equations 2.3.8).

The MALI iterative scheme is :

1. initial choice for the old populations n
†
l

2. set up the equations of populations (2.1.9). Then we solve the preconditionned equa-
tions of statistical equilibrium (2.3.8) in order to obtain new populations nl

3. these new nl populations from step 2 become old populations for the next iteration,
etc. This iterative process continues until convergence is reached.

2.2.2 Choice of approximate lambda operator Λ∗
µν

We note that in practice the so-called exact lambda operator Λµν is itself an approximation
based on some discretization of the problem (1.1.7) in space (see section 1.1.2 of chapiter
1 “Case of a two-level atom”), and it appears as a matrix operator (inverse of the matrix T

(1.1.19)) acting on the values of the source function ((1.1.18) and (1.1.20)) at the chosen
discrete spatial grid.

One of the simplest choices for an approximation operator Λ∗
µν is to take the diagonal part

of this full matrix operator Λµν, this is the choice made in the previous chapter for the case
of a two-level atom and also by Olson et al. (1986). Λ∗

µν is recalculed every time when the
populations ni are updated (unlike the case of a two-level atom). Other possible choices are:
the tridiagonal part of the full operator or an even wider band than the tridiagonal.

The principal advantage of the diagonal approximation is that the equations of statistical
equilibrium remain completely local, whereas more sophisticated band approximations, such
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as tridiagonal, introduce nonlocalness into these equations, which are then harder to solve,
and may be more unstable.

We now derive linear preconditioned equations of statistical equilibrium for a multilevel line
problem, using a local operator (i.e. we choose the diagonal approximation Λ∗

µν) in the fol-
lowing cases :

− with no background continuum (i.e. with no continuum absorption) and application to
semi-infinite atmosphere (see section 2.3)

− with background continuum (i.e. with continuum absorption) and application to semi-
infinite atmosphere (see section 2.4).

It is important to preserve linearity of original equations of the statistical equilibrium, as long
as the electronic density ne is known a priori.

2.3 Local operator with no background continuum (no

continuum absorption). Application to a semi-infinite

atmosphere

2.3.1 Statistical equilibrium equations

Since the lines are assumed non-overlapping, in the neighborhood of line ll′ we have Sµν = Sll′ ,
which is frequency-independent.
Using this in equation (2.2.1) we obtain, for frequencies near the line :

Iµν = Λ∗
µν Sll′ + Ieff

µν , (2.3.1)

where

Ieff
µν = Λµν [S†

ll′] − Λ∗
µν S

†
ll′ := I†

µν − Λ∗
µν S

†
ll′ according to (1.1.1) (2.3.2)

Here, I†
µν is the radiation field that one gets from the formal solution with the old populations.

Remark 2.3.1 As the operator is local here (it is the diagonal of Λµν), the product of a
matrix by a vector is a simple multiplication between terms of source function and Λ matrix.
That’s why brackets [ ] are omitted in the expression of Λ∗

µν[Sµν] = Λ∗
µν Sll′.

Substituting (2.3.1) into expression of the integrated mean intensity J̄ll′ (2.1.8), we have :

J̄ll′ = Λ̄∗
ll′ Sll′ + J̄

eff
ll′ , (2.3.3)
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with

Λ̄∗
ll′ = 1

4π

∫

dΩ
∫

φll′ Λ∗
µν dν, (2.3.4)

and

J̄
eff
ll′ = 1

4π

∫

dΩ
∫

φll′ Ieff
µν dν = J̄

†
ll′ − Λ̄∗

ll′ S
†
ll′ (2.3.5)

are angle and frequency averages of Λµν and Ieff
µν , using φll′ as a weighting function.

The quantity J̄
†
ll′ defined below, is the value of the integrated mean intensity obtained by

integrating over the old radiation field at previous iteration :

J̄
†
ll′ = 1

4π

∫

dΩ
∫

φll′ I†
µν dν (2.3.6)

Proof of (2.3.4)-(2.3.6) :

According to (2.3.1) and (2.3.2), equation (2.1.8) can be written as :

J̄ll′ = 1
4π

∫

dΩ
∫

φll′(µ, ν) Λ∗
µν Sll′ dν + 1

4π

∫

dΩ
∫

φll′(µ, ν) Ieff
µν dν

= A + B

(2.3.7)

Since Sll′ is independent of the frequency ν, the first term A is written as :

A = 1
4π

Sll′

∫

dΩ
∫

φll′ (µ, ν) Λ∗
µν dν

= 1
4π

Sll′ Λ̄∗
ll′, avec Λ̄∗

ll′ = 1
4π

∫

dΩ
∫

φll′ Λ∗
µν dν.

Hence (2.3.4). �

The second term B is J̄
eff
ll′ :

B = 1
4π

∫

dΩ
∫

φll′(µ, ν) Ieff
µν dν = J̄

eff
ll′ by definition

= 1
4π

∫

dΩ
∫

φll′(µ, ν) I†
µν dν − 1

4π

∫

dΩ
∫

φll′ (µ, ν) Λ∗
µν S

†
ll′ dν according to (2.3.2)

= J̄
†
ll′ − Λ∗

ll′ S
†
ll′

Hence (2.3.6) and (2.3.5). �
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Subtituting these results in population equations (2.1.9), with the use of ll′ line source func-
tion expression (2.1.3), we obtain the preconditioned equations of statistical equilibrium for
level l (l′ being the other levels) :

∑

l′<l

[nl All′(1 − Λ̄∗
ll′ ) − (nl′ Bl′l − nl Bll′) J̄

eff
ll′ ]

−
∑

l′>l

[nl′ Al′l(1 − Λ̄∗
ll′) − (nl Bll′ − nl′ Bl′l) J̄

eff
ll′ ]

+
∑

l′,l′ 6=l

(nl Cll′ − nl′ Cl′l) = 0

(2.3.8)

Proof of (2.3.8) :

According to (2.1.3) and (2.3.3), equations of statistical equilibrium (2.1.9) are :

∑

l′<l

[nl All′ − (nl′ Bl′l − nl Bll′) J̄ll′ ]

−
∑

l′>l

[nl′ Al′l − (nl Bll′ − nl′ Bl′l) J̄ll′]

+
∑

l′,l′ 6=l

(nl Cll′ − nl′ Cl′l) = 0

⇐Ñ
∑

l′<l

U −
∑

l′>l

V +
∑

l′,l′ 6=l

(nl Cll′ − nl′ Cl′l) = 0

(2.3.9)

Let U = nl All′ − (nl′ Bl′l − nl Bll′) J̄ll′, l′ < l

= nl All′ − (nl′ Bl′l − nl Bll′) Λ̄∗
ll′ Sll′ − (nl′ Bl′l − nl Bll′ ) J̄

eff
ll′ according to (2.3.3)

= U1 − (nl′ Bl′l − nl Bll′ ) J̄
eff
ll′

And U1 = nl All′ − (nl′ Bl′l − nl Bll′) Λ̄∗
ll′ Sll′

= nl All′ − (nl′ Bl′l − nl Bll′) Λ̄∗
ll′

nl All′

nl′ Bl′l − nl Bll′
according to (2.1.3)

= nl All′ − nl All′ Λ̄∗
ll′

= nl All′ (1 − Λ̄∗
ll′)

Then,
U = nl All′ (1 − Λ̄∗

ll′) − (nl′ Bl′l − nl Bll′) J̄
eff
ll′ , l′ < l
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Let

V = nl′ Al′l − (nl Bll′ − nl′ Bl′l) J̄ll′, l′ > l

= nl′ Al′l − (nl Bll′ − nl′ Bl′l) Λ̄∗
ll′ Sl′l − (nl Bll′ − nl′ Bl′l) J̄

eff
ll′ according to (2.3.3)

= nl′ Al′l − W − (nl Bll′ − nl′ Bl′l) J̄
eff
ll′

It is sufficient to prove that W = nl′ Al′l Λ̄∗
ll′ for l′ > l :

W = (nl Bll′ − nl′ Bl′l) Λ̄∗
ll′ Sl′l

= (nl Bll′ − nl′ Bl′l) Λ̄∗
ll′

nl′ Al′l

nl Bll′ − nl′ Bl′l

according to (2.1.3)

= nl′ Al′l Λ̄∗
ll′ , l′ > l

Thus,
V = nl′ Al′l (1 − Λ̄∗

ll′ ) − (nl Bll′ − nl′ Bl′l) J̄
eff
ll′

Hence (2.3.8). �

Remark 2.3.2 The result of these substitutions is to leave the form of statistical equilibrium
equations the same as before (2.1.9), except that the Einstein A-coefficient (i.e. All′ or Al′l)
has been multiplied by the factor (1 − Λ̄∗

ll′) and the integrated mean intensity J̄ll′ is now re-

placed by J̄
eff
ll′ .

These preconditioned statistical equilibrium equations are clearly still linear (if the electron
density ne is known a priori) in the ion/atom populations.

Another desirable feature of these modified equations (2.3.8) is that they automatically guar-
antee non-negative solutions for the new populations. This property follows the non-negativity
of the modified rate coefficients.

Finally, it is important for the preceding argument that the approximate operator Λ∗
µν be

the diagonal of the exact Λµν to obtain (Λµν − Λ∗
µν) > 0.

2.3.2 Description of H3CRD program

Nature of the physical problem : self-consistent solution in 1D of statistical equilibrium equa-
tions with NLTE radiative transfer equations corresponding to each treated transition for
hydrogen atom (3 levels), for a semi-infinite atmosphere, using complete frequency redistri-
bution (CRD), without internal velocity field

Method of solution : MALI (Multi Accelerated Lambda Iteration) method and short char-
acteristics method
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Other relevant information : ionization equilibrium in not included. All transitions are ra-
diatively permitted. Boundary conditions are monochromatic. We use the (old) benchmark
from Avrett (1968).

Author : F. Paletou (IRAP)

Program available from :
https://idoc.ias.u-psud.fr/MEDOC/Radiative transfer codes/Tools for radiative transfer

Computer(s) on which program hab been tested : PC with 4 Intel processors (2.67GHz)

Operating System(s) for which version of program has been tested : Linux

Programming language used : rewritten in Fortran 90 by M. Chane-Yook (gfortran com-
piler)

Status : stable

Accessibility : open (MEDOC)

No. of code lines in combined program and test deck : 781

Typical running time : < 1 min for 50 iterations of MALI cycle

References :

• G. B. Rybicki & D. G. Hummer, “An accelerated lambda iteration method for multilevel
radiative transfer. I- Non-overlapping lines with background continuum”, A&A, 245,
171-181, 1991

• F. Paletou, “Transfert de rayonnement : méthodes itératives”, C. R. Acad. Sci. Paris,
t.2, Série IV, 885-898, 2001

• E. H. Avrett, “Resonance lines in Astrophysics”, NCAR, 1968.

2.3.3 Algorithm

Figure 2.3 describes the algorithm of H3CRD code.

2.3.4 Atomic structure of hydrogen

We consider here 3 levels for hydrogen (see figure 2.4). More specifically, we consider absorp-
tion and emission transitions :
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Bij , Bji, Cij , Cji

iter=1,niter

transitions

Output :

MALI cycle :
loop on

Inititialization :
- statistical equilibrium : Aji,

- Boundary conditions
- electron density Ne

- populations of levels Ni for H

Loop on

- Computation of opacity (in lines)
- Computation of source function (in lines)

- Computation of Λ̄∗
ll′

- Computation of J̄

- Computation of J̄
eff
ll′

- Preconditioned statistical equilibrium

for the computation of new populations

- Convergence test : max|δn/n|

- We write Λ̄∗
ll′ and J̄

eff
ll′ in outpul file

- We write final H populations in output file

- We write S/B results for each transition in output file

Figure 2.3: Algorithm of H3CRD code.
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n = 1

n = 2

n = 3

Lyα

Hα

Lyβ

energy

Figure 2.4: Hydrogen energy diagram (figure is not to scale) - 3 radiative transitions (in red).

• 1 to 2 : Lyα

• 1 to 3 : Lyβ

• 3 to 2 : Hα

For other simplified atoms, refer to Avrett (1968).

2.3.5 Description of subroutines

H3CRD code is written in fortran 90. The main program “h3crd.f90” calls 3 subroutines :

- grilles : setting up of frequency grid, optical depth grid, direction grid, grid for statistical
weights of levels, angular quadrature weight grid, Einstein coefficients A and B, collisional
coefficients and Gauss profile (for each line).

- initialisation_population : estimation of level 1 population (n1) from χ21, computation of
the other population densities at LTE, calculation of electron density ne assuming that each
optical depth is initialized in the same way, computation of Cij from populations at LTE.

- cycle_mali : 1) formal solution of RTE (using short characteristics method). 2) coupling
with statistical equilibrium equations (using MALI method).
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The main program “h3crd.f90” uses several modules whose files are (see the following section
2.3.5.1 for the set of variables used) :

- param.f90 : contains global variables as well as constants defined as nlev, nfreq, ndir, ...

- general.f90 : contains several subroutines such as computation of grids, initialization of
populations, computation of B Einstein coefficients, computation of Doppler width, definition
of Planck function (lower boundary condition; no illumination on the surface), computation
of optical depth, LU decomposition for linear system solution.

- mali.f90 : contains several subroutines used for MALI cycle : solution of preconditioned
statistical equilibrium equations (Rybicki and Hummer, 1991), solution of radiative transfer
equations using short characteristics method.

The output file is “fort.1” which contains results S/B (τ) for each transition.

2.3.5.1 Set of variables used in module “param_mod” (param.f90 file)

These are global variables.

• nlev=3 : number of atomic levels

• nfrq=16 : number of frequencies

• ndir=3 : number of directions

• nord=2 : quadrature order

• nd=53 : number of layers for optical depth grid

• pi : value of π

• h : Planck constant in cm2.g.s−1

• ryd : Rydberg constant in erg

• bolt : Boltzmann constant in cm2.g−1.s−2.K−1

• cl : velocity of light in cm.s−1

• m_H : mass of hydrogen atom in g

• RS : Sun radius in cm

• ta=5000K : atmospheric temperature

• chil21=1 : absorption coefficient

• g (array of size nlev) : statistical weights of hydrogen levels
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• nu (array of size (nlev,nlev)) : transition frequency

• A, B, C (arrays of size (nlev,nlev)) : Einstein A and B coefficients, collision rate coeffi-
cients C

• tau0, tau (arrays of size nd) : optical depth grids

• csz, wtdir (arrays of size ndir) : angular quadrature (cosine of the angle between radi-
ation and z-axis) and angular quadrature weights

• wtnu (array of size nfrq) : integration weights with respect to frequency

• phi (array of size nfrq) : line profile

• phij, chi, jeff (arrays of size nd) : J̄, line absorption coefficient, J̄
eff
ll′

• sl (array of size (nfrq,nd)) : source function

• n, nprec (arrays of size (nlev,nd)) : population density, population density calculated at
LTE

• ne : electron density

• bc0, bcd (arrays of size (nfrq,ndir)) : upper (top of layer, z(1)) and lower (z(nz))
boundary conditions

• lstar (array of size nd) : Λ̄∗
ll′

• erls (array of size niter, niter is the number of iterations in MALI cycle. For more details,
see subroutine “cycle_mali” in the file “mali.f90”) : error

• jjeff, llstar (arrays of size (nlev,nlev,nd)) : intermediate arrays for J̄
eff
ll′ and Λ̄∗

ll′

2.3.5.2 Description of subroutines in module “general_mod” (general.f90 file)

Module general_mod contains subroutines used in MALI cycle.

Subroutine grilles : this subroutine sets up different grids for modeling a semi-infinite
atmosphere. Specifically,
- we consider a grid of optical thickness "tau0" in cm, ordered by increasing value (see figure
1.1)
- we consider statistical weights of hydrogen levels, angular quadrature (cosine of the angle
between radiation and z-axis), weights in angular quatdrature, frequencies of the 3 transitions,
Einstein A coefficients and Cji (see page 46 from Avrett (1968)),
- we calculate Einstein B coefficients
- we calculate Gaussian line profile. We renormalize profile and frequency quadrature.
- reduced frequency grid x = ν − ν0/∆νD, where ν is frequency, ν0 is line center frequency,
and ∆νD is Doppler width
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Subroutine initialisation_population : estimation of n1 (population of level 1) from ab-
sorption coefficient χ21 = 1 (opacity grid is fixed and becomes geometric grid “tau0”). The
other population densities are calculated at LTE. We also compute total electron density as-
suming that each depth is initialized in the same way. We compute Cji using populations at
LTE

Subroutine eincoef : computation of induced emission coefficients Bji and Bij

Function dopwidth : Doppler width calculation

Subroutine boltzex : calculation of population density at LTE

Function planckf : calculation of Planck function

Subroutines ludcmp et lubksb : solution of the system of equations matsys . N = SEC

using LU decomposition (numerical recipes)

2.3.5.3 Description of subroutines in module “mali_mod” (mali.f90 file)

Module mali_mod contains subroutines solving in self-consistent way statistical equilibrium
equations with non-LTE radiative transfer equations corresponding to each treated transition,
using MALI and short characteristics methods.

Subroutine cycle_mali : niter is the number of iterations of MALI cycle, input by the
user. Boundary conditions bc0 and bcd are then defined. Hence, MALI cycle starts :
- for each transition, we calculate renormalized absorption coefficient, we calculate Λ̄∗

ll′ (we
choose evaldiag=true in subroutine “rt1d”), we calculate J̄ (we choose evaldiag=false in
subroutine “rt1d”), we calculate Jeff . Jeff and Λ̄∗

ll′ are stored in order to compute level
populations
- we solve preconditioned statistical equilibrium equations (subroutine “malieqstat”) and we
calculate the error
- we write final populations and S/B (output) for each transition.

Subroutine malieqstat : Matrix matsys of size (nlev,nlev) is built from preconditioned
statistical equilibrium equations (2.17) of Rybicki and Hummer (1991). In H3CRD program,
terms of matsys matrix are :

⋆ matsys(1, 1) = A12(1−Λ̄∗
12k)+B12 J̄

eff
12k +C12 +A13(1−Λ̄∗

13k)+B13 J̄
eff
13k +C13 with A12 = 0

and A13 = 0

⋆ matsys(1, 2) = −A21(1 − Λ̄∗
12k) − B21J̄

eff
12k − C21
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⋆ matsys(1, 3) = −A31(1 − Λ̄∗
13k) − B31J̄

eff
13k − C31

⋆ matsys(2, 1) = −A12(1 − Λ̄∗
12k) − B12J̄

eff
21k − C12 with A12 = 0

⋆ matsys(2, 2) = A21(1−Λ̄∗
21k)+B21 J̄

eff
21k +C21 +A23(1−Λ̄∗

23k)+B23 J̄
eff
23k +C23 with A23 = 0

⋆ matsys(2, 3) = −A32(1 − Λ̄∗
23k) − B32J̄

eff
23k − C32

⋆ matsys(3, 1) = matsys(3, 2) = matsys(3, 3) = 1 : closure condition. We replace
the last equation of (2.3.8) by ne = n1 + n2 + n3 (particular case of hydrogen :
np = n1 + n2 + n3 = nH and np = ne).

The following linear system is obtained :

matsys . N = SEC, (2.3.10)

with N =




n1
n2
n3



 and SEC =




0
0
ne





We solve system (2.3.10) using subroutines ludcmp and lubksb (LU decomposition).
matsys matrix can be written as :
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C
A

SE
O

F
A

M
U

LT
ILE

V
E

L
A

T
O

M





A12(1−Λ̄∗
12k)+B12J̄

eff
12k+C12+A13(1−Λ̄∗

13k)+B13J̄
eff
13k+C13 −A21(1 − Λ̄∗

12k) − B21J̄
eff
12k − C21 −A31(1 − Λ̄∗

13k) − B31J̄
eff
13k − C31

−A12(1 − Λ̄∗
12k) − B12J̄

eff
21k − C12 A21(1−Λ̄∗21k)+B21J̄

eff
21k+C21+A23(1−Λ̄∗23k)+B23J̄

eff
23k+C23 −A32(1 − Λ̄∗

23k) − B32J̄
eff
23k − C32

1 1 1




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Subroutine rt1d : Figure 2.5 summarizes calculation of J̄. Subroutine rt1d computes
either the diagonal of Λ operator (when evaldiag=true) or J̄ (when evaldiag=false), using
short characteristics method (Leger, 2008; Lambert et al., 2016).

idir = 1,ndir

in = -1
k0=1, k1=nz,
kdel=1
I = bc0

J̄(k0 + kdel), ...,
J̄(k1)

J̄(k0 + kdel), ...,

J̄(k1)

in = 1
k0=nz, k1=1,
kdel=-1
I = bcd

Loop on

angles

computation of J̄(k0),

computation of J̄(k0),

Update of J̄ by summing
with J̄(in = −1)

Figure 2.5: Algorithm for computation of J̄.

2.3.6 Running H3CRD program

• make clean

• make

• ./h3crd

Result file is fort.1 which contains results of S/B (τ) for each transition.
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2.4 Local operator with background continuum (with con-

tinuum absorption). Application to a semi-infinite

atmosphere) : planned
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Part II

Non-LTE radiative transfer in 2D :
planned
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