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ABSTRACT

Context. Time-resolved observations of loops embedded in the solar corona show the existence of motions of matter inside these
structures, as well as the global motions of these objects themselves.
Aims. We have developed a modeling tool for cylindrical objects inside the solar corona, including 2-dimensional (azimuth-dependent)

radiative transfer effects and 3-dimensional velocity fields.

Methods. We used numerical methods to simultaneously solve the equations of NLTE radiative transfer, statistical equilibrium of
hydrogen level populations, and electric neutrality. The radiative transfer equations were solved using cylindrical coordinates and
prescribed solar incident radiation. In addition to the effects of anisotropic incident radiation, treated in previous papers, we took into
account the Doppler shifts produced by a 3-dimension velocity field.

Results. The effects of different types of velocity fields on hydrogen line profiles and intensities are described. Motions include loop
oscillations, rotation, and longitudinal flows, which produce different deformations of profiles. Doppler brightening and dimming

effects are also observed.

Conclusions. This is a new step in the diagnostic of physical conditions in coronal loops, allowing the study of dynamical phenomena.

Key words. methods: numerical — radiative transfer — line: formation — line: profiles — Sun: chromosphere — Sun: corona

1. Introduction

The outer solar atmosphere, observed in spectral lines with suf-
ficient opacity or emissivity, appears to be formed of thread-
like structures, produced by the magnetic field. Different
kinds of motions may be detected within these structures.
Instruments with high spatial and spectral resolutions, such
as SOHO/SUMER, allow the detection of velocity fields by
Doppler effect (see observations by Chae et al. 2000). Imagers
with high angular and temporal resolutions directly show the
motions of loops (see in particular some movies by TRACE
onhttp://trace.lmsal.com/). The modeling of these struc-
tures requires the introduction of the Doppler effect in radiative
transfer equations.

This paper is the fifth in a series dedicated to NLTE ra-
diative transfer in cylindrical objects. It is more specifically
the continuation of Paper III (Gouttebroze 2006), which dealt
with the formation of the hydrogen spectrum in a cylin-
drical object, taking into account both multilevel-atom and
2-dimensional azimuth-dependent (2DAD) radiative transfer ef-
fects. The method for solving 2DAD radiative transfer equations,
as well as for determining appropriate boundary conditions,
are described in Paper II (Gouttebroze 2005). Other equations,
concerning statistical and mechanical equilibrium, are given in
Paper I (Gouttebroze 2004).

In the present paper, we introduce a velocity field in the ra-
diative transfer equations for spectral lines. The principal con-
sequence is that the absorption coefficient is now dependent
on direction. Some symmetries are lost: line profiles are no
longer symmetric with respect to the line center, as it was in
the static case. Also, the symmetry in ¢ (azimuthal coordinate)

is no longer valid, which requires the use of a y-mesh covering
a range of 2r radians, instead of & in Paper III. The differences
in the formulation are explained in Sect. 2, and consequences on
the code in Sect. 3. Results are given in Sect. 4 for different types
of velocity fields.

2. Formulation

Apart from the presence of velocity fields, the model under con-
sideration is the same as in Paper III, i.e. a cylinder imbedded
in the solar corona and filled with a mixture of hydrogen and
helium, in the proportion of 1 atom of helium for 10 atoms of
hydrogen. Helium is assumed to be neutral, so that the electrons
present in the medium come from the ionization of hydrogen. As
a consequence, the electron density is equal to the proton density,
which is determined by a set of equations including statistical
equilibrium of hydrogen level populations, radiative transfer in
various transitions, and pressure equilibrium. The temperatures,
pressures, and microturbulent velocities inside the cylinder are
set a priori, as is the velocity field. Other physical parameters are
deduced by solving the above-mentioned system of equations.
The introduction of a velocity field leaves a number of equations
unchanged, which have been presented in Papers I and II and are
not reproduced here. They mainly concern:

— the calculation of incident intensities, taking the specific ge-
ometry of the problem into account (Paper II);

— equations of statistical equilibrium, treated in Paper I, which
are essentially independent of geometry;

— equations concerning radiative transfer in continua, which
are practically insensitive to the Doppler effect, for moderate
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Fig. 1. System of coordidates for the cylinder: the location of the run-
ning point is defined by r,  and z, the direction of the ray by 6 and £,
and the gas velocity by V. The 3 Cartesian components of V are also
plotted (without labels).

velocities. The absorption and emission coefficients are
given in Paper I, and the 2DAD transfer process is the same
as for lines, as described in Paper II.

We thus concentrate here on equations concerning radiative
transfer in spectral lines with Doppler effect.

2.1. Systems of coordinates

To solve the present problem, it is convenient to use cylindri-
cal and Cartesian coordinates in parallel. Physical parameters,
as well as boundary conditions, are more simply expressed in
terms of cylindrical coordinates. In contrast, the direction of
a ray crossing the cylinder is defined by constant parameters
(direction cosines) in Cartesian coordinates instead of variable
angles in a cylindrical system. The coordinate systems are rep-
resented in Fig. 1. The running point M is defined by three cylin-
drical coordinates r, ¢, and z, or alternatively by Cartesian co-
ordinates x = rcosy, y = rsiny, and z. The direction of a ray
at point M is defined either by direction cosines (u, v, w) or by
two angles ¢ and 6. To cover the whole space, { varies from —n
to mr, and @ from O to m. However, it will be seen later that, us-
ing symmetrized variables, the range of variation in { may be
reduced to [—7/2, +7/2]. The direction cosines may be deduced
from direction angles as

u = sinfcos(y + ),
v = sin@sin(y + ),
w = cosé, (1)

and the inverse tranformation may be written

‘- arccos(m)—d/, if v>0,
— arccos \/’4‘,‘7) -y, if v<0,
6 = arccosw. 2)
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The velocity of the gas is defined by the vector V, which is a
function of r and ¢. The longitudinal component V, is common
to the Cartesian and cylindrical coordinates, while the Cartesian
transversal components, V, and V,, may be deduced from the
cylindrical ones, V, and V,;, by

Ve = Vecosy — Vysiny,
V, = V,siny + Vy cosy. (3)

2.2. Absorption coefficient and source function

The absorption coefficient in a spectral line formed between the
lower level [ and the upper level u may be written

K (Av, ) = K d(Av, n), 4)
with
M hvul
K, = 4_ (NiBy, — NyByy). (5)
T

Here, K%l is the mean (or frequency-integrated) absorption coeffi-
cient, Av the frequency difference with the frequency at line cen-
ter v, N the number density of atoms in level j, B;; the Einstein
coefficients for absorption or stimulated emission, and ¢ the nor-
malized profile (other symbols have their usual meaning). In the
rest frame of the gas, the profile ¢ is independent of direction,
as in the static case, and may be written

G
H( Av) ©)

a. —
’AVD

1

G A,G
¢~ (Av7) NI
where H is the Voigt function, Av® the relative frequency in the
rest frame of the gas, Avp the Doppler width, and a the damping
factor.

As a result of the Doppler effect, a photon with a relative
frequency AvC in the rest frame of the gas, with a direction n, is
observed in a fixed frame with a relative frequency Av such that

AV = Ay = -y, @
which yields the profile in the fixed frame
1 1 Yul
Av,m) = Ha,—(Av——n-V). 8
¢(Av, n) NI [ Avp c ] ®)

Since the Voigt function is symmetric, from Eq. (8) the useful
relation follows

¢(=Av, —n) = ¢(Av, n). )

Under the assumptions of complete redistribution and negligible
continuous absorption, ¢ is also the emission profile, so that the
source function is, as in the static case, independent of frequency
and direction, i.e.,

NuAul

Spy=———m—o-o—- 10
" NiBu — NBu 1o
2.83. Radiative transfer along a ray
The equation of transfer may be written
dI(Av,
O~ v m 11~ 1A, m] an
)

where [ is the specific intensity and s the abscissa along the ray.
We replace the intensity by Feautrier-type variables Y and Z,
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Fig. 2. Path of a photon through the cylinder, projected on a transversal
plane (for clarity, the r-mesh is reduced to 6 points).

but associating negative n with negative Av to take advantage of
Eq. (9),1.e.,

Y(Av,n) = — [I(Av,n) + I(-Av, —n)],

N =N =

Z(Av, n) [I(Av, n) — I(=Av, -n)] . (12)

Applying Eq. (11) to the intensities going in opposite directions

and combining the results, we obtain

dZ(Av, n)
ds

dY(Av, n)
ds

k(Av, n) [S 1 — Y(Av, m)],

—k(Av, n)Z(Av, n), (13)

and subsequently a second-degree equation for Y,

1 d [ 1 dY(Av,n) (14)

xAv.n) ds | kAvin)  ds } YA = S
This equation has a familiar form and may be, by discretization
of s, transformed into a tridiagonal system to deduce Y from S'.
To close the system, we use the boundary conditions provided
by the incident intensities at both ends of the ray, /; and I (cor-
responding to the extreme values of s, named s; and sg),

1 dravm]
[Y(AV, n) - K(AV, n) T:Ll = I] (AV, n),
1 dravmw|
[Y(Av, n)+K(Av, o TLK = Ix(—Av,—n). (15)

It should be noticed that, since the incident intensities are ex-
pressed in a fixed frame, they are symmetric with respect to Av.
As a consequence, it is sufficient to compute one half-profile for
each line, as in Papers II and III.

807

2.4. Mean intensity

The mean intensity, which is used in the equations of statisti-
cal equilibrium of level populations, is obtained by integrating
the specific intensity, multiplied by the absorption profile, with
respect to frequency and direction, i.e.,

j- ﬁ f wd(Ay)Sﬁ 1(Av, W (Av, m)d<. (16)

The integration over the whole Q-space may be split into two
half spaces, which gives, in terms of direction angles,

+7/2 T
ggf(n)dQ = f d{f [f(n) + f(—n)] sin 6 d6.
- 0

/2

A7)

Applying this formula to Eq. (16) and distinguishing between
positive and negative relative frequencies, we obtain
+7/2 T

J = i f B d(Av) dc f [I(Av, n)p(Av, n)
ar Jo —/2 0
+ I(Av,—n)¢(Av, —n) + [(—Av, n)¢(—Av, n)

+ I(=Av,—n)¢(—Av, —n)] sin 6 d6. (18)
Using Egs. (9) and (12), this expression reduces to
_ 1 +71/2 T +00
J = — dg“f sin0d0f Y(Av, n)
21 J xp2 0 —oo
X ¢(Av, n)d(Av). (19)

In the case where the intensity would be uniformly equal to
unity, J should also be equal to 1, which gives the normaliza-
tion condition for the absorption profile,

1 +7'(/2

— ¢ f " sin6 d6 f wqﬁ(Av, md(Av) = 1.
0 —c0

20
A (20)

3. Numerical methods

The formal solution consists of computing the mean intensity J
at every point inside the cylinder, knowing the absorption co-
efficients and source functions at these points and the incident
intensities at the surface of the cylinder. In the computation of
the mean intensity, we successively consider the (N, — 1) X Ny,
points of the spatial grid (|, which corresponds to the axis of the
cylinder, is omitted). From every point M of the spatial mesh, we
draw N; X Ny rays and solve the transfer equation along each of
these rays to obtain the symmetrized intensities Y. This opera-
tion is repeated for each frequency in the line. Then, we integrate
over frequency and direction to obtain J at point M, according
to Eq. (19).

3.1. Computation of Y

The process is similar to the one described in Paper II. However,
there are two important differences:

— there is no more symmetry with respect to the meridian plane
containing the center of the Sun. Thus, we use a y-mesh cov-
ering a range [0, 27] instead of [0, 7];

— the absorption coefficient depends on direction, i.e. on angles
{ and 6, in addition to other variables like r, ¥, Av, and tran-
sition number, so the full storage of absorption coefficients
could be problematic. It was found to be more convenient
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to store the mean absorption coefficient of the line ™ (in-
dependent of £, 6, and Av) and the parameters Avp and a,
mentioned in Eq. (6), separately. At each position on the ray,
the absorption profile may be recomputed from these two
parameters and from the velocity vector V.

The path of a photon through the cylinder is represented in Fig. 2
in projection on a transversal plane. The angle 6 is not repre-
sented, so that one ray on the figure corresponds to Ny rays in
three dimensions. The different variables are discretized: there
are N, values r; for the radius, Ny for the azimuth, and N, and
Ny for the direction angles. For the relative frequency Av, we
keep a mesh covering one half-profile (Av,,y = 1,...,n), as in
the previous codes, and apply it twice to cover the whole profile.

The incident intensities at both ends, I; and Ix, and the level
populations for each point of the spatial mesh, are known. From
the level populations, the source functions and the frequency-
integrated absorption coefficients may be computed for each
point of the spatial mesh (r and ). Parameters Avp and a are de-
termined from the local temperature and microturbulent velocity.
Using the trigonometric interpolation procedure described in the
next section, we may obtain the values of these parameters for
any . The transfer Eq. (14) is discretized along a mesh formed
by the intersections of the ray with the cylinders corresponding
to the radius mesh (represented by circles in Fig. 2). The number
of the intersections K is variable with r and £, its maximum value
being (2N, — 2). For each of these intersections (j = 1,..., K),
the abscissa s; is determined, as well as the absorption coeffi-
cient «; and the source function S;. The discretization of Eq. (14)
produces a tridiagonal system

—Aij_l+(1+Aj+Cj)Yj—Cij+1 =Sj,

(G=2.... K—-1), Q1)
with
4
Aj= , (22)
Ki(Sjs1 = Sj=1)(Kj1 + K)(8j = 8j-1)
and
4

Kj(Sje1 = Sj-1)(Kj + Kjr1)(Sje1 = )

This system is complemented by the boundary conditions (15),
whose dicretized form is

(1 +C] +H1)Y] —C]Y2 = S] +H1]1,
_AKYK—I +(1+AK+HK)YK = SK+HKIK,

with C; = 2/[k(s2 — s1)*], Hi = 2/[ki(s2 — s)], Ax =
2/[K?((SK —sk-1)?], and Hgx = 2/[kx(skx — sk_1)]. (For the deriva-
tion of these formulae, see Paper I1.) This system is solved in the
usual manner to obtain the values of Y along the ray, and the
value at point M is retained.

(24)

3.2. Trigonometric interpolation

The numerical solution of the radiative transfer equation using
the intersections of the ray with the radius mesh cylinders as
mesh points, there is no need for interpolation in r. In contrast,
to determine the coefficients of Egs. (21) to (24), it is neces-
sary to interpolate in i several parameters, namely, M S, Avp,
and a. The velocity vector V is not interpolated, but defined as a
function of r and .
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Fig. 3. Example of trigonometric interpolation. For a regularly spaced
Y-mesh, 2m values F; are randomly chosen (here, m = 6). They are
represented by full circles. The (m + 1) values f; (open squares) and
(m — 1) values g; (open triangles) are deduced according to Eqs. (31)
and (32). The points f; are fit by the even function f(y) (dotted line)
and g, by the odd function g(y) (dashed line). The sum of these two
functions F(y) (full line) fits the original data.

As said above, there is no longer any symmetry in ¢, so that
we use a y-mesh covering the interval [0, 27], viz.

g 2 2U=D

=7 5)

(j: 1»"'»Nl(/)»

where N, is even (N, = 2m). The function to be interpolated is
defined on the same grid, i.e.,
Fyp)=F;, (j=1,...,Ny).

The interpolation procedure consists of splitting the function into
its even and odd parts, respectively,

(26)

JW)

% [F(y) + FQr— )] and

1
gW) 3 [F) - FQr-y)], (27
and replacing f(i) by a series of cosines and g(¢) by a series of
sines. Since the sine functions vanish for ¢ = 0 and ¥ = 7, the
two series have an unequal number of terms, (m + 1) for (i)

and (m — 1) for g(¥), i.e.,

3

-+

and

J@W) ajcos[(j— ]

Jj=1

g@W) = ) bjsin[(j - Dy]. (28)

<
I
[

The coeficients a; and b; are determined by solving a set of 2m
linear equations, which may be written

m+1

DAjac = fi, (j=1,....m+1), and
k=1
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ZB,kbk =g, (=2....m), (29)
k=2

with

Aj = cos[(k—1),] = cos W, and

By = Sinw. (30)

m

It should be noticed that, as a result of the orthogonality prop-
erties of trigonometric functions, the matrices A and B may be
inverted by analytical means (cf. Legras 1963). The coefficients
fj and g; are obtained from the F; as

fi = Fy,
1 .
fi = E(Fj + Fopia-p),  (j=2,...,m),
fm+l = Fm+l’ (31)
and
1 .
gj= E(Fj - Fopia-p), (j=2,...,m). (32)

An example of this method of interpolation is shown in Fig. 3.

3.3. Integration over frequency and direction

The quadrature formulae for direction are the same as in the
static case. For £, we have

1 +71/2 l
0wk Y,

/2

(33)

a=1

and, for 0,

1 (™ . o
5 fo £(0) sin 6d0 ~ /; baf (). (34)

The situation for frequency is different, since we must integrate
over the whole profile, which is assymmetric. Considering one
half profile, we limit it to its useful part [0, Aviyac] and introduce
a quadrature formula,

n

AVimax
fo FOd@A) ~ Y e, f(Avy).

y=1

(35)

Substituting the three preceding formulae into Eq. (19), we
obtain

l
J = Z Ay
a=1 B=
+ (_AV77 5&7 9ﬁ)¢(_AV7’ gm 9,3)]

The normalization condition (20) gives

m n

bp Y Y (AVy, o Op)B(AVy, Lo )
1 y=

(36)

! m n

D e Y b Y e B(Ay, Lo, 0) + H(=AVy, Lo O] = 1. (37)

e=1  p=1  y=1

In practice, to ensure a good normalization of the integration
process (conservation of photons), we compute the lefthand side
of Eq. (37) and divide the result of Eq. (36) by this value.
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3.4. Preconditioning

To accelerate the A-iteration according to the “MALI” method,
we use as approximate operator the diagonal of the full A oper-
ator, as suggested by Olson et al. (1986). The tridiagonal system
formed by Egs. (21) and (24) may be formally written as a ma-
trix product
MY =S + '™, (38)
where I'™ = [H,I},0,...,0, Hglx]. If W is the inverse of the
tridiagonal matrix M, the solution of Eq. (38) is obviously

Y = WS + W™, (39)

We apply the summation operator of Eq. (36), noted for conve-
nience as Zaﬁy, to the two sides of Eq.(39), and obtain

J=AS+C, (40)

with J = 2apy(¥)s A = 35, (W), and C = Zaﬁy(WIi“C). When
solving the tridiagonal system formed by Egs. (21) and (24), we
obtain the diagonal W* of the matrix W, according to the method
of Rybicki & Hummer (1991, Appendix B), for each ray, and, by
summation, the diagonal A* of the A operator,

A = Z(W*).

apy

(41)

The implementation of A* into the equations of statistical equi-
librium, according to the principles of Werner & Husfeld (1985),
is described in Paper I.

4. Results

Different phenomena may produce motions of matter inside flux
tubes. There is an abundant literature concerning the oscillations
of coronal loops (see for instance Roberts 2002, and references
therein). They primarily produce transversal motions. But there
are phenomena, like siphon flows, that produce longitudinal mo-
tions (e.g. Robb & Cally 1992; Betta et al. 1999, or Doyle et al.
2006). The purpose of the present paper is not to propose a de-
tailed modeling of these solar phenomena, but rather to study
the effects of some basic types of motions (radial, rotational, or
longitudinal) on the emitted hydrogen lines.

4.1. Basic static model

The different numerical experiments presented here are based on
the same static model, to which we add different velocity fields.
This basic model is taken from Paper III, where it was used to
study loops with a radial temperature gradient. It consists of a
semi-toric loop, whose axis is a circle of radius 10* km. The
section of the torus is a circle of radius 10° km. The axis of the
torus is vertical at the feet of the loop and horizontal at the top.
The gas pressure is kept constant throughout the loop and equal
to 0.1 dyn cm~2. The temperature is only a function of r, equal
to 6000 K from r = 0 to » = 500 km, and regularly growing from
r = 500 to » = 1000 km, where it reaches 10° K. This variation is
explained in Table 1. Since the numerical code deals with cylin-
ders, the torus is simulated by a succession of tangent cylinders.
Each part is characterized by an inclination angle @, going from
0 at the foot of the loop to /2 at the top. For each value of the
a-grid, a cylindrical model is computed. An interpolation pro-
cedure is used to obtain physical and spectroscopic parameters
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Table 1. Physical parameters and optical thicknesses at selected points of the r-grid, in the static model (at the foot of the loop: vertical axis).

7 (km) T (K) Ny (cm™) 1\7—; 7(La) 7(LB) T7(Ha)
0.00 6000. 9.17E+10 0.216 2.51E+05 4.03E+04 4.09E-01
93.10 6000. 9.16E+10 0.218 2.06E+05 3.30E+04 3.57E-01
186.21 6000. 9.11E+10 0.225 1.61E+05 2.58E+04 3.04E-01
279.31 6000. 9.02E+10 0.238 1.17E+05 1.88E+04 2.47E-01
372.41 6000. 8.88E+10 0.260 7.47E+04 1.20E+04 1.85E-01
465.52 6000. 8.61E+10 0.302 3.49E+04 5.59E+03 1.14E-01
527.59 7008. 6.82E+10 0.414 1.26E+04 2.03E+03 6.20E-02
620.69 11833. 3.24E+10 0.791 1.23E+03 1.97E+02 1.60E-02
713.79 19 980. 1.75E+10 0.976 4.30E+01 6.90E+00 5.51E-04
806.90  33738. 1.02E+10  0.999 9.07E-01 1.45E-01 4.33E-06
900.00  56968. 6.05E+09 1.000 4.83E-02 7.75E-03 1.91E-07
990.00 94 529. 3.65E+09 1.000 1.18E-03 1.89E-04 4.46E-09
999.00  99439. 347E+09 1.000 1.06E-04 1.70E-05 4.02E-10
999.90 99944 345E+09 1.000 1.05E-05 1.68E-06 3.98E-11
1000.0 100000. 3.45E+09  1.000 0.0 0.0 0.0
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Table 2. Optical thicknesses for the static model, at the top of the loop
(horizontal axis).

Transition Line Y =0 Y =m/2 y=m
12 La  254E+05 2.71E+05 2.91E+05
1-3 LB  4.07E+04 4.35E+04 4.67E+04
2-3 Ha  4.66E-01 4.03E-01 3.33E-01
1-4 Ly 141E+04 1.51E+04 1.62E+04
2-4 HB  6.45E-02 557E-02 4.60E-02
34 Pa  7.07E-03 5.46E-03 4.05E-03
1-5 Lé  6.64E+03 7.09E+03 7.62E+03
2-5 Hy 2.15E-02 1.86E-02 1.54E-02
3-5 PB  9.42E-04 7.31E-04 5.45E-04
4-5 Bra 2.99E-03 245E-03 1.92E-03

corresponding to intermediate values of @. Once the tempera-
ture, pressure, and microturbulent velocity (fixed to 5 km s~!)
are set, the other parameters are computed by solving the equa-
tions of radiative transfer, statistical equilibrium, pressure equi-
librium, and electric neutrality (the incident intensities in dif-
ferent lines and continua of hydrogen are also set, as described
in previous papers). The physical parameters resulting from this
computation, such as hydrogen and electron densities, are func-
tions of both  and ¢. An exception is the foot of the loop: there,
the incident radiation is independent of ¢, so that the transfer
problem reduces to one dimension, and all physical parameters
only depend on r. In Table 1, the total hydrogen density Ny and
the ionization ratio (N./Ny) are given as functions of r, for the
foot of the loop. In addition, this table gives optical thicknesses,
between the running point and the surface, for three basic tran-
sitions of hydrogen (L, LB, and Ha). The comparison of op-
tical thicknesses of Lyman and Balmer lines explains why the
same loop appears to be broader in UV than in visible obser-
vations. The total optical thicknesses (between the axis and the
surface of the cylinder) are displayed in Table 2 for a larger set
of transitions. Here, the values correspond to the top of the loop,
where the axis is horizontal. In this case, the incident intensities
and the resulting physical parameters depend on azimuth, so we
give the thicknesses for three values of : 0 (vertical downward
direction), /2 (horizontal), and & (vertical upward). Since the
incident intensities from the Sun decrease as i increases, the ex-
citation of hydrogen atoms decreases. The result is an increase in
optical thicknesses in Lyman lines, in proportion to the popula-
tion of the ground state, and conversely a decrease in thicknesses
in other lines, whose lower levels are less and less excited.

4.2. Radial motions

We consider a radial velocity V,, which could correspond to a
phase of expansion during a process of radial oscillation. The
radial velocity is taken as proportional to the distance to the
axis, i.e. V., = k r. Three values of k have been tested: 0.01,
0.02, and 0.03 s~!. The highest value, which corresponds to a
radial velocity of 30 km s~! at the surface of the cylinder, pro-
duces line profiles that are displayed in Fig. 4. Each individual
profile corresponds to one different position across the top of
the loop (equivalent to a cylinder with horizontal axis). The de-
formation of profiles is particularly important for Lyman-c, as
may be seen at the top of Fig. 4. In addition, the comparison
of intensity scales for static and expanding models shows that
Le is strongly affected by the Doppler dimming effect (studied
for planar models by Heinzel & Rompolt 1987; Gontikakis et al.
1997a,b; or Labrosse et al. 2007). The La profiles corresponding
to intermediate radial velocities (10 and 20 km s~! at boundary)
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Fig. 5. Intensity variations across the fop of the loop for the La line,
for intermediate radial velocities. Top: 10 km s~! at boundary; bottom:
20 km s~!. Same units and positions as in Fig. 4.

are displayed in Fig. 5 to show the gradual transformation of the
profiles. Intensities in the other hydrogen lines are much less af-
fected by the radial velocity. For LS, there are two maxima in the
profiles. The main peak, shifted towards the blue, corresponds
to the front part of the cylinder. A much weaker peak, appear-
ing in the red side of the line, is produced by the rear part of
the structure. This effect is shown in Fig. 6 as a gray image with
higher spatial resolution (201 points, i.e. 10 km). Upper Lyman
lines (not represented here) exhibit the same behavior as the LS
line. Balmer lines (represented here by Ha) are esentially broad-
ened by the radial velocity. When the velocity field is present,
their intensity in the upper part of the cylinder is somewhat low-
ered with respect to the static case. This effect may be due to
the broadening of the absorption profile in the lower part of the
cylinder, which tends to reduce the penetration of incident radi-
ation in the upper part.

4.3. Rotation

In this case, we apply a rotational motion of the cylinder around
its axis. This rotation is of the solid type, i.e. V, = wor. The
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Fig. 6. Intensity variations across the top of the loop for the L3 line (rel-
ative scale; white corresponds to brightest points). Abscissae: relative
wavelengths (A). Ordinates: distances in km. Top: static case; bottom:
expanding model (30 km s~! at boundary).

angular velocity wy used here is equal to 0.02 rad s~!, so that
the tangential velocity is 20 km s~! at boundary. Contrary to the
radial velocities, the tangential ones have little influence on the
intensities and the shape of the profiles. The main effect, for a
horizontal cylinder, is a shift of the profiles, to the red in the
upper part of the structure and to the blue in the lower part, ac-
cording to the Doppler effect. These profiles are displayed in
Fig. 7 for La, LB, and He, to compare with the static profiles of
Fig. 4. For LB, a representation as image is provided in Fig. 8§,
for comparison with Fig. 6.

4.4. Longitudinal flow

The effects of longitudinal flows are studied using two values
of the velocity V,, 30 and 80 km s~!. It appears that this kind
of motion has little influence on the La profile and intensity,
except a slight dimming effect. A stronger effect may be ob-
served on LB: the profiles are significantly broadened and take
a square shape (Fig. 9), at least for the highest velocity. There

P. Gouttebroze: Radiative transfer in cylindrical threads with incident radiation. V.
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angular velocity wg = 0.02 rad sh
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Fig.9. Intensity profiles of LS, for a longitudinal velocity V, =

80 km s~! (same presentation and units as in Fig. 4).

is also an increase in intensity. For He, the shape of the pro-
files remains nearly Gaussian, but the intensity increases rapidly.
This Doppler-brightening effect for He and Lg is illustrated by
Fig. 10. The ratio of intensities, along the axis of the loop, be-
tween the dynamic and the static models, is plotted as a function
of the inclination angle a. The highest ratio is observed for Ha,
whatever the inclination angle. For Ha as for LG, these effects
are somewhat stronger near the feet of the loop (@ = 0) than
near the top (o = n1/2).

5. Conclusion

The numerical methods developed here constitute a new step
in modeling the filamentary structures observed in the solar
chromosphere and corona. The code described in Paper III was
able to treat NLTE radiative transfer for a multilevel hydrogen
atom in a 2D azimuth-dependent cylindrical geometry. To these
functionalities, the present code adds the possibility of treating
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Fig. 10. Effect of Doppler dimming (L) or brightening (LS and He)
produced by a longitudinal velocity V, = 30 (dotted line) or 80 (full
line) km s~!. The ratios of intensities between the dynamic and the static
models, for the 3 lines and the two velocities, are plotted vs. the incli-
nation angle @ (0 corresponds to the foot of the loop, /2 to the top).

velocity fields of any direction, i.e. with radial, tangential, and
longitudinal components. This means that it could be used for
modeling loop oscillations and flows of matter, with or without
rotation. Concerning the applications of the numerical methods
described in this series of papers, it is worth noting that the 1D
code has been used for modeling the chromospheric fine struc-
ture from VAULT data (Patsourakos et al. 2007). The present
code could be used either as a diagnostic tool for interpreting
observations or as a complement to theoretical (MHD or thermo-
dynamical) modeling. Future investigations should include other
atomic species than hydrogen, in order to extend the field of
applications.
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